Update Training/Code/train.py
Browse files- Training/Code/train.py +77 -38
Training/Code/train.py
CHANGED
@@ -1,60 +1,99 @@
|
|
1 |
import os
|
2 |
import numpy as np
|
|
|
|
|
|
|
3 |
from tensorflow.keras.models import Model
|
4 |
-
from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D
|
|
|
5 |
from tensorflow.keras.optimizers import Adam
|
6 |
-
from
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
#
|
16 |
train_datagen = ImageDataGenerator(
|
17 |
rescale=1./255,
|
18 |
-
rotation_range=
|
19 |
-
zoom_range=0.
|
|
|
|
|
|
|
20 |
horizontal_flip=True,
|
21 |
-
|
22 |
-
width_shift_range=0.2,
|
23 |
-
height_shift_range=0.2
|
24 |
)
|
25 |
-
val_datagen = ImageDataGenerator(rescale=1./255)
|
26 |
|
27 |
-
|
28 |
-
img_size = 128
|
29 |
|
30 |
train_generator = train_datagen.flow_from_directory(
|
31 |
-
train_dir,
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
val_dir,
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
#
|
|
|
41 |
x = base_model.output
|
42 |
x = GlobalAveragePooling2D()(x)
|
43 |
-
x =
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
5 |
+
from tensorflow.keras.applications import EfficientNetV2B1
|
6 |
from tensorflow.keras.models import Model
|
7 |
+
from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D
|
8 |
+
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
|
9 |
from tensorflow.keras.optimizers import Adam
|
10 |
+
from sklearn.utils.class_weight import compute_class_weight
|
11 |
+
|
12 |
+
# ==================== Paths ====================
|
13 |
+
train_dir = "/content/combine_dataset/train"
|
14 |
+
val_dir = "/content/combine_dataset/test"
|
15 |
|
16 |
+
# ==================== Parameters ====================
|
17 |
+
img_size = (192, 192) # Recommended for EfficientNetV2B1
|
18 |
+
batch_size = 32
|
19 |
+
epochs = 30
|
20 |
+
num_classes = 7
|
21 |
|
22 |
+
# ==================== Data Augmentation ====================
|
23 |
train_datagen = ImageDataGenerator(
|
24 |
rescale=1./255,
|
25 |
+
rotation_range=10,
|
26 |
+
zoom_range=0.1,
|
27 |
+
width_shift_range=0.05,
|
28 |
+
height_shift_range=0.05,
|
29 |
+
brightness_range=[0.9, 1.1],
|
30 |
horizontal_flip=True,
|
31 |
+
fill_mode='nearest'
|
|
|
|
|
32 |
)
|
|
|
33 |
|
34 |
+
val_datagen = ImageDataGenerator(rescale=1./255)
|
|
|
35 |
|
36 |
train_generator = train_datagen.flow_from_directory(
|
37 |
+
train_dir,
|
38 |
+
target_size=img_size,
|
39 |
+
batch_size=batch_size,
|
40 |
+
class_mode='categorical',
|
41 |
+
shuffle=True
|
42 |
+
)
|
43 |
|
44 |
+
val_generator = val_datagen.flow_from_directory(
|
45 |
+
val_dir,
|
46 |
+
target_size=img_size,
|
47 |
+
batch_size=batch_size,
|
48 |
+
class_mode='categorical',
|
49 |
+
shuffle=False
|
50 |
+
)
|
51 |
|
52 |
+
# ==================== Compute Class Weights ====================
|
53 |
+
labels = train_generator.classes
|
54 |
+
class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(labels), y=labels)
|
55 |
+
class_weights = dict(enumerate(class_weights))
|
56 |
|
57 |
+
# ==================== Build Model ====================
|
58 |
+
base_model = EfficientNetV2B1(include_top=False, input_shape=(192, 192, 3), weights='imagenet')
|
59 |
x = base_model.output
|
60 |
x = GlobalAveragePooling2D()(x)
|
61 |
+
x = Dropout(0.4)(x)
|
62 |
+
output = Dense(num_classes, activation='softmax')(x)
|
63 |
+
model = Model(inputs=base_model.input, outputs=output)
|
64 |
+
|
65 |
+
# ==================== Compile Model ====================
|
66 |
+
optimizer = Adam(learning_rate=1e-5)
|
67 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
68 |
|
69 |
+
# ==================== Callbacks ====================
|
70 |
+
checkpoint = ModelCheckpoint(
|
71 |
+
"/content/emotion_model.keras",
|
72 |
+
monitor='val_accuracy',
|
73 |
+
save_best_only=True,
|
74 |
+
verbose=1
|
75 |
+
)
|
76 |
|
77 |
+
early_stop = EarlyStopping(
|
78 |
+
monitor='val_loss',
|
79 |
+
patience=7,
|
80 |
+
restore_best_weights=True,
|
81 |
+
verbose=1
|
82 |
+
)
|
83 |
|
84 |
+
lr_schedule = ReduceLROnPlateau(
|
85 |
+
monitor='val_loss',
|
86 |
+
factor=0.5,
|
87 |
+
patience=3,
|
88 |
+
verbose=1,
|
89 |
+
min_lr=1e-6
|
90 |
+
)
|
91 |
|
92 |
+
# ==================== Train Model ====================
|
93 |
+
model.fit(
|
94 |
+
train_generator,
|
95 |
+
validation_data=val_generator,
|
96 |
+
epochs=epochs,
|
97 |
+
callbacks=[checkpoint, early_stop, lr_schedule],
|
98 |
+
class_weight=class_weights
|
99 |
+
)
|