# Importing Libraries import os import numpy as np import cv2 from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Input from keras.optimizers import Adam from keras_preprocessing.image import ImageDataGenerator from keras.callbacks import EarlyStopping, ModelCheckpoint # Define paths using os.path for portability base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../')) train_dir = os.path.join(base_dir, 'Data/train') val_dir = os.path.join(base_dir, 'Data/test') # Data augmentation and rescaling train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=30, zoom_range=0.2, horizontal_flip=True, shear_range=0.2, width_shift_range=0.2, height_shift_range=0.2 ) val_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical') validation_generator = val_datagen.flow_from_directory( val_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical') # Building the Convolutional Network Architecture emotion_model = Sequential() emotion_model.add(Input(shape=(48, 48, 1))) emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu')) emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) emotion_model.add(MaxPooling2D(pool_size=(2, 2))) emotion_model.add(Dropout(0.25)) emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) emotion_model.add(MaxPooling2D(pool_size=(2, 2))) emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) emotion_model.add(MaxPooling2D(pool_size=(2, 2))) emotion_model.add(Dropout(0.25)) emotion_model.add(Flatten()) emotion_model.add(Dense(1024, activation='relu')) emotion_model.add(Dropout(0.5)) emotion_model.add(Dense(7, activation='softmax')) # Compile the model emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001), metrics=['accuracy']) # Define callbacks callbacks = [ EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True), ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True) ] # Train the model emotion_model_info = emotion_model.fit( train_generator, epochs=50, validation_data=validation_generator, callbacks=callbacks ) # Save the full model emotion_model.save("emotion_model.keras")