Spaces:
Running
Running
File size: 27,728 Bytes
3647f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# multimodal_module.py
import os
import pickle
import subprocess
import tempfile
import shutil
import asyncio
import logging
from datetime import datetime
from typing import Dict, List, Optional, Any, Union
import uuid
import numpy as np
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("MultiModalModule")
# Space-specific environment configuration
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Core ML Imports
import torch
from transformers import (
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
Wav2Vec2Processor,
Wav2Vec2ForSequenceClassification,
AutoModelForCausalLM
)
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInpaintPipeline
)
from huggingface_hub import hf_hub_download, snapshot_download
# Audio Processing
import librosa
import soundfile as sf
from gtts import gTTS
import speech_recognition as sr
import webrtcvad
# Image/Video Processing
from PIL import Image
import imageio
import imageio_ffmpeg
import moviepy.editor as mp
import cv2
# Document Processing
import fitz # PyMuPDF
from langdetect import detect, DetectorFactory
DetectorFactory.seed = 0
# Configuration
USE_SAFETY_CHECKER = False
MAX_HISTORY_LENGTH = 100
TEMP_DIR = "tmp"
MODEL_CACHE_DIR = "model_cache"
class MultiModalChatModule:
"""Complete multimodal module optimized for Hugging Face Spaces"""
def __init__(self, chat_history_file: str = "chat_histories.pkl"):
"""Initialize with Space optimizations"""
# Create required directories
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
# Device configuration
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.torch_dtype = torch.float16 if "cuda" in self.device else torch.float32
logger.info(f"Initialized on {self.device.upper()} with dtype {self.torch_dtype}")
# Model registry
self.model_names = {
"voice_emotion_processor": "facebook/hubert-large-ls960-ft",
"voice_emotion_model": "superb/hubert-base-superb-er",
"translation_model": "facebook/nllb-200-distilled-600M",
"chatbot_tokenizer": "facebook/blenderbot-400M-distill",
"chatbot_model": "facebook/blenderbot-400M-distill",
"image_captioner": "Salesforce/blip-image-captioning-base",
"sd_inpaint": "runwayml/stable-diffusion-inpainting",
"sd_text2img": "runwayml/stable-diffusion-v1-5",
"code_model": "bigcode/starcoder",
}
# Model placeholders
self._voice_processor = None
self._voice_emotion_model = None
self._translator = None
self._chat_tokenizer = None
self._chat_model = None
self._image_captioner = None
self._sd_pipe = None
self._sd_inpaint = None
self._code_tokenizer = None
self._code_model = None
# Helpers
self._sr_recognizer = sr.Recognizer()
self.vad = webrtcvad.Vad(3)
self.chat_history_file = chat_history_file
self.user_chat_histories = self._load_chat_histories()
# Load tracking
self._loaded = {
"voice": False,
"translation": False,
"chat": False,
"image_caption": False,
"sd": False,
"code": False,
}
# ----------------------
# Core Utilities
# ----------------------
def _tmp_path(self, suffix: str = "") -> str:
"""Generate space-compatible temp file path"""
path = os.path.join(TEMP_DIR, f"{uuid.uuid4().hex}{suffix}")
os.makedirs(os.path.dirname(path), exist_ok=True)
return path
def _cleanup(self, *paths: str) -> None:
"""Safely remove files/directories"""
for path in paths:
try:
if path and os.path.exists(path):
if os.path.isfile(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
except Exception as e:
logger.warning(f"Cleanup failed for {path}: {e}")
def _load_chat_histories(self) -> Dict[int, List[dict]]:
"""Load chat histories from file"""
try:
with open(self.chat_history_file, "rb") as f:
return pickle.load(f)
except Exception as e:
logger.warning(f"Failed loading chat history: {e}")
return {}
def _save_chat_histories(self) -> None:
"""Persist chat histories to file"""
try:
with open(self.chat_history_file, "wb") as f:
pickle.dump(self.user_chat_histories, f)
except Exception as e:
logger.error(f"Failed saving chat history: {e}")
def _update_history(self, user_id: int, role: str, content: Any, lang: str = "en") -> None:
"""Update conversation history"""
if user_id not in self.user_chat_histories:
self.user_chat_histories[user_id] = []
self.user_chat_histories[user_id].append({
"timestamp": datetime.now().isoformat(),
"role": role,
"content": content,
"language": lang
})
# Enforce max history length
self.user_chat_histories[user_id] = self.user_chat_histories[user_id][-MAX_HISTORY_LENGTH:]
self._save_chat_histories()
# ----------------------
# Model Loading
# ----------------------
def _load_voice_models(self) -> None:
"""Load voice processing models"""
if self._loaded["voice"]:
return
try:
logger.info("Loading voice models...")
self._voice_processor = Wav2Vec2Processor.from_pretrained(
self.model_names["voice_emotion_processor"],
cache_dir=MODEL_CACHE_DIR
)
self._voice_emotion_model = Wav2Vec2ForSequenceClassification.from_pretrained(
self.model_names["voice_emotion_model"],
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["voice"] = True
logger.info("Voice models loaded successfully")
except Exception as e:
logger.error(f"Failed loading voice models: {e}")
def _load_translation(self) -> None:
"""Load translation pipeline"""
if self._loaded["translation"]:
return
try:
logger.info("Loading translation model...")
device = 0 if self.device == "cuda" else -1
self._translator = pipeline(
"translation",
model=self.model_names["translation_model"],
device=device,
cache_dir=MODEL_CACHE_DIR
)
self._loaded["translation"] = True
logger.info("Translation model loaded successfully")
except Exception as e:
logger.error(f"Failed loading translation model: {e}")
def _load_chatbot(self) -> None:
"""Load chatbot models"""
if self._loaded["chat"]:
return
try:
logger.info("Loading chatbot models...")
self._chat_tokenizer = AutoTokenizer.from_pretrained(
self.model_names["chatbot_tokenizer"],
cache_dir=MODEL_CACHE_DIR
)
self._chat_model = AutoModelForSeq2SeqLM.from_pretrained(
self.model_names["chatbot_model"],
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["chat"] = True
logger.info("Chatbot models loaded successfully")
except Exception as e:
logger.error(f"Failed loading chatbot models: {e}")
def _load_image_captioner(self) -> None:
"""Load image captioning model"""
if self._loaded["image_caption"]:
return
try:
logger.info("Loading image captioner...")
device = 0 if self.device == "cuda" else -1
self._image_captioner = pipeline(
"image-to-text",
model=self.model_names["image_captioner"],
device=device,
cache_dir=MODEL_CACHE_DIR
)
self._loaded["image_caption"] = True
logger.info("Image captioner loaded successfully")
except Exception as e:
logger.error(f"Failed loading image captioner: {e}")
def _load_sd(self) -> None:
"""Load Stable Diffusion models"""
if self._loaded["sd"]:
return
try:
logger.info("Loading Stable Diffusion models...")
# Text-to-image
self._sd_pipe = StableDiffusionPipeline.from_pretrained(
self.model_names["sd_text2img"],
torch_dtype=self.torch_dtype,
safety_checker=None if not USE_SAFETY_CHECKER else None,
cache_dir=MODEL_CACHE_DIR
).to(self.device)
# Inpainting
self._sd_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
self.model_names["sd_inpaint"],
torch_dtype=self.torch_dtype,
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["sd"] = True
logger.info("Stable Diffusion models loaded successfully")
except Exception as e:
logger.error(f"Failed loading Stable Diffusion models: {e}")
self._sd_pipe = None
self._sd_inpaint = None
def _load_code_model(self) -> None:
"""Load code generation model"""
if self._loaded["code"]:
return
try:
logger.info("Loading code model...")
self._code_tokenizer = AutoTokenizer.from_pretrained(
self.model_names["code_model"],
cache_dir=MODEL_CACHE_DIR
)
self._code_model = AutoModelForCausalLM.from_pretrained(
self.model_names["code_model"],
cache_dir=MODEL_CACHE_DIR
).to(self.device)
self._loaded["code"] = True
logger.info("Code model loaded successfully")
except Exception as e:
logger.error(f"Failed loading code model: {e}")
self._code_tokenizer = None
self._code_model = None
# ----------------------
# Audio Processing
# ----------------------
async def analyze_voice_emotion(self, audio_path: str) -> str:
"""Analyze emotion from voice audio"""
self._load_voice_models()
if not self._voice_processor or not self._voice_emotion_model:
return "unknown"
try:
speech, sr = librosa.load(audio_path, sr=16000)
inputs = self._voice_processor(
speech,
sampling_rate=sr,
return_tensors="pt",
padding=True
).to(self.device)
with torch.no_grad():
logits = self._voice_emotion_model(**inputs).logits
emotions = {
0: "happy", 1: "sad", 2: "angry",
3: "fearful", 4: "calm", 5: "surprised"
}
return emotions.get(torch.argmax(logits).item(), "unknown")
except Exception as e:
logger.error(f"Voice emotion analysis failed: {e}")
return "error"
async def process_voice_message(self, voice_file, user_id: int) -> Dict[str, Any]:
"""Process voice message to text with emotion analysis"""
ogg_path = self._tmp_path(".ogg")
wav_path = self._tmp_path(".wav")
try:
# Save and convert audio
await voice_file.download_to_drive(ogg_path)
# Convert to WAV
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
cmd = [
ffmpeg_path, "-y", "-i", ogg_path,
"-ar", "16000", "-ac", "1", wav_path
]
subprocess.run(cmd, check=True, capture_output=True)
# Analyze audio
speech, sr = librosa.load(wav_path, sr=16000)
# Voice Activity Detection
is_speech = self.vad.is_speech(
(speech * 32767).astype(np.int16).tobytes(),
sample_rate=sr
)
# Transcription
text = ""
lang = "en"
if is_speech:
with sr.AudioFile(wav_path) as source:
audio = self._sr_recognizer.record(source)
try:
text = self._sr_recognizer.recognize_google(audio, language="en-US")
except sr.UnknownValueError:
pass
except Exception as e:
logger.warning(f"Speech recognition failed: {e}")
# Emotion analysis
emotion = await self.analyze_voice_emotion(wav_path) if is_speech else "no_speech"
# Update history
result = {
"text": text,
"language": lang,
"emotion": emotion,
"is_speech": is_speech
}
self._update_history(user_id, "user", result, lang)
return result
except Exception as e:
logger.error(f"Voice message processing failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(ogg_path, wav_path)
async def generate_voice_reply(self, text: str, user_id: int, fmt: str = "ogg") -> str:
"""Generate audio from text (TTS)"""
mp3_path = self._tmp_path(".mp3")
out_path = self._tmp_path(f".{fmt}")
try:
# Generate TTS
tts = gTTS(text=text, lang='en')
tts.save(mp3_path)
# Convert format
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
if fmt == "ogg":
subprocess.run([
ffmpeg_path, "-y", "-i", mp3_path,
"-c:a", "libopus", out_path
], check=True)
elif fmt == "wav":
subprocess.run([
ffmpeg_path, "-y", "-i", mp3_path, out_path
], check=True)
else:
shutil.move(mp3_path, out_path)
# Update history
self._update_history(user_id, "assistant", f"[Voice reply: {fmt}]")
return out_path
except Exception as e:
logger.error(f"Voice reply generation failed: {e}")
raise RuntimeError(f"TTS failed: {e}")
finally:
if fmt != "mp3" and os.path.exists(mp3_path):
self._cleanup(mp3_path)
# ----------------------
# Text Processing
# ----------------------
async def generate_response(self, text: str, user_id: int, lang: str = "en") -> str:
"""Generate conversational response with context"""
self._load_chatbot()
self._load_translation()
# Update history
self._update_history(user_id, "user", text, lang)
# Prepare context
context = []
for msg in self.user_chat_histories[user_id][-5:]:
if msg["language"] != "en":
try:
translated = self._translator(msg["content"])[0]["translation_text"]
context.append(f"{msg['role']}: {translated}")
except Exception:
context.append(f"{msg['role']}: {msg['content']}")
else:
context.append(f"{msg['role']}: {msg['content']}")
# Generate response
input_text = f"Context:\n{' '.join(context)}\nUser: {text}"
inputs = self._chat_tokenizer(input_text, return_tensors="pt").to(self.device)
try:
outputs = self._chat_model.generate(
**inputs,
max_new_tokens=200,
do_sample=True,
temperature=0.7
)
response = self._chat_tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Response generation failed: {e}")
response = "I couldn't generate a response. Please try again."
# Translate if needed
if lang != "en":
try:
response = self._translator(response)[0]["translation_text"]
except Exception:
pass
# Update history
self._update_history(user_id, "assistant", response, lang)
return response
# ----------------------
# Image Processing
# ----------------------
async def process_image_message(self, image_file, user_id: int) -> str:
"""Generate caption for an image"""
img_path = self._tmp_path(".jpg")
try:
# Save and load image
await image_file.download_to_drive(img_path)
image = Image.open(img_path).convert("RGB")
# Generate caption
self._load_image_captioner()
caption = self._image_captioner(image)[0]["generated_text"]
# Update history
self._update_history(user_id, "user", "[Image]", "en")
self._update_history(user_id, "assistant", f"Image description: {caption}", "en")
return caption
except Exception as e:
logger.error(f"Image processing failed: {e}")
return f"Error processing image: {str(e)}"
finally:
self._cleanup(img_path)
async def generate_image_from_text(self, prompt: str, user_id: int,
width: int = 512, height: int = 512,
steps: int = 30) -> str:
"""Generate image from text prompt"""
self._load_sd()
if not self._sd_pipe:
raise RuntimeError("Image generation unavailable")
out_path = self._tmp_path(".png")
try:
# Generate image
result = self._sd_pipe(
prompt,
num_inference_steps=steps,
height=height,
width=width
)
result.images[0].save(out_path)
# Update history
self._update_history(user_id, "user", f"[Image request: {prompt}]", "en")
self._update_history(user_id, "assistant", f"[Generated image]", "en")
return out_path
except Exception as e:
logger.error(f"Image generation failed: {e}")
raise RuntimeError(f"Image generation failed: {e}")
async def edit_image_inpaint(self, image_file, mask_file=None,
prompt: str = "", user_id: int = 0) -> str:
"""Edit image using inpainting"""
self._load_sd()
if not self._sd_inpaint:
raise RuntimeError("Image editing unavailable")
img_path = self._tmp_path(".png")
mask_path = self._tmp_path("_mask.png") if mask_file else None
out_path = self._tmp_path("_edited.png")
try:
# Save inputs
await image_file.download_to_drive(img_path)
if mask_file:
await mask_file.download_to_drive(mask_path)
# Prepare images
init_image = Image.open(img_path).convert("RGB")
mask_image = Image.open(mask_path).convert("L") if mask_path else Image.new("L", init_image.size, 255)
# Inpaint
result = self._sd_inpaint(
prompt=prompt if prompt else " ",
image=init_image,
mask_image=mask_image,
guidance_scale=7.5,
num_inference_steps=30
)
result.images[0].save(out_path)
# Update history
self._update_history(user_id, "user", "[Image edit request]", "en")
self._update_history(user_id, "assistant", "[Edited image]", "en")
return out_path
except Exception as e:
logger.error(f"Image editing failed: {e}")
raise RuntimeError(f"Inpainting failed: {e}")
finally:
self._cleanup(img_path, mask_path)
# ----------------------
# Video Processing
# ----------------------
async def process_video(self, video_file, user_id: int, max_frames: int = 4) -> Dict[str, Any]:
"""Process video file to extract audio and keyframes"""
vid_path = self._tmp_path(".mp4")
audio_path = self._tmp_path(".wav")
try:
# Save video
await video_file.download_to_drive(vid_path)
# Extract audio
clip = mp.VideoFileClip(vid_path)
clip.audio.write_audiofile(audio_path, logger=None)
duration = clip.duration
fps = clip.fps
# Transcribe audio
transcribed = ""
try:
with sr.AudioFile(audio_path) as source:
audio = self._sr_recognizer.record(source)
transcribed = self._sr_recognizer.recognize_google(audio)
except Exception as e:
logger.warning(f"Audio transcription failed: {e}")
# Extract frames
frames = []
captions = []
try:
reader = imageio.get_reader(vid_path)
total_frames = reader.count_frames()
step = max(1, total_frames // max_frames)
for i in range(0, total_frames, step):
try:
frame = reader.get_data(i)
frame_path = self._tmp_path(f"_frame{i}.jpg")
Image.fromarray(frame).save(frame_path)
frames.append(frame_path)
if len(frames) >= max_frames:
break
except Exception:
continue
# Generate captions
if frames and self._load_image_captioner():
for frame_path in frames:
try:
caption = self._image_captioner(Image.open(frame_path))[0]["generated_text"]
captions.append(caption)
except Exception:
captions.append("")
finally:
self._cleanup(frame_path)
except Exception as e:
logger.warning(f"Frame extraction failed: {e}")
# Update history
result = {
"duration": duration,
"fps": fps,
"transcription": transcribed,
"captions": captions
}
self._update_history(user_id, "user", "[Video upload]", "en")
self._update_history(user_id, "assistant", result, "en")
return result
except Exception as e:
logger.error(f"Video processing failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(vid_path, audio_path)
# ----------------------
# File Processing
# ----------------------
async def process_file(self, file_obj, user_id: int) -> Dict[str, Any]:
"""Process document files (PDF, DOCX, TXT)"""
fpath = self._tmp_path()
try:
# Save file
await file_obj.download_to_drive(fpath)
# Read based on type
text = ""
if fpath.lower().endswith(".pdf"):
try:
with fitz.open(fpath) as doc:
text = "\n".join([page.get_text() for page in doc])
except Exception as e:
text = f"[PDF error: {e}]"
elif fpath.lower().endswith((".txt", ".csv")):
try:
with open(fpath, "r", encoding="utf-8", errors="ignore") as f:
text = f.read()
except Exception as e:
text = f"[Text error: {e}]"
elif fpath.lower().endswith(".docx"):
try:
import docx
doc = docx.Document(fpath)
text = "\n".join([p.text for p in doc.paragraphs])
except Exception as e:
text = f"[DOCX error: {e}]"
else:
text = "[Unsupported file type]"
# Summarize
summary = text[:500] + ("..." if len(text) > 500 else "")
# Update history
result = {
"summary": summary,
"length": len(text),
"type": os.path.splitext(fpath)[1]
}
self._update_history(user_id, "user", f"[File upload: {result['type']}]", "en")
self._update_history(user_id, "assistant", result, "en")
return result
except Exception as e:
logger.error(f"File processing failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(fpath)
# ----------------------
# Code Processing
# ----------------------
async def code_complete(self, prompt: str, max_tokens: int = 512,
temperature: float = 0.2) -> str:
"""Generate code completions"""
self._load_code_model()
if not self._code_model or not self._code_tokenizer:
raise RuntimeError("Code model not available")
try:
inputs = self._code_tokenizer(prompt, return_tensors="pt").to(self.device)
outputs = self._code_model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True
)
return self._code_tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Code completion failed: {e}")
raise RuntimeError(f"Code generation error: {e}")
async def execute_python_code(self, code: str, timeout: int = 5) -> Dict[str, str]:
"""Execute Python code in sandbox (DANGER: Unsecure)"""
temp_dir = self._tmp_path()
script_path = os.path.join(temp_dir, "script.py")
try:
# Create temp dir
os.makedirs(temp_dir, exist_ok=True)
# Write script
with open(script_path, "w") as f:
f.write(code)
# Execute
proc = await asyncio.create_subprocess_exec(
"python3", script_path,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
try:
stdout, stderr = await asyncio.wait_for(proc.communicate(), timeout=timeout)
return {
"stdout": stdout.decode("utf-8", errors="ignore"),
"stderr": stderr.decode("utf-8", errors="ignore")
}
except asyncio.TimeoutError:
proc.kill()
return {"error": "Execution timed out"}
except Exception as e:
logger.error(f"Code execution failed: {e}")
return {"error": str(e)}
finally:
self._cleanup(temp_dir) |