Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,822 +1,343 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
#
|
4 |
-
|
5 |
-
import os
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
if os.path.exists(FERNET_KEY_FILE):
|
82 |
-
with open(FERNET_KEY_FILE, "rb") as f:
|
83 |
-
return f.read()
|
84 |
-
key = Fernet.generate_key()
|
85 |
-
with open(FERNET_KEY_FILE, "wb") as f:
|
86 |
-
f.write(key)
|
87 |
-
return key
|
88 |
-
|
89 |
-
FERNET = Fernet(load_or_create_fernet_key())
|
90 |
-
|
91 |
-
def _rand_key(n=25):
|
92 |
-
chars = string.ascii_letters + string.digits
|
93 |
-
return "".join(random.choice(chars) for _ in range(n))
|
94 |
-
|
95 |
-
def load_keys():
|
96 |
-
if os.path.exists(KEYS_FILE):
|
97 |
-
with open(KEYS_FILE, "rb") as f:
|
98 |
-
enc = f.read()
|
99 |
-
if not enc:
|
100 |
-
return {}
|
101 |
try:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
return {}
|
107 |
-
|
108 |
-
def save_keys(d):
|
109 |
-
enc = FERNET.encrypt(json.dumps(d).encode("utf-8"))
|
110 |
-
with open(KEYS_FILE, "wb") as f:
|
111 |
-
f.write(enc)
|
112 |
-
|
113 |
-
API_KEYS = load_keys()
|
114 |
-
if not API_KEYS:
|
115 |
-
# First-run bootstrap default user
|
116 |
-
api_key = _rand_key(25)
|
117 |
-
API_KEYS["default_user"] = {"api_key": api_key, "created_at": time.time()}
|
118 |
-
save_keys(API_KEYS)
|
119 |
-
|
120 |
-
def get_default_api_key():
|
121 |
-
return API_KEYS["default_user"]["api_key"]
|
122 |
-
|
123 |
-
def verify_api_key(header_key: str):
|
124 |
-
for user, rec in API_KEYS.items():
|
125 |
-
if rec.get("api_key") == header_key:
|
126 |
-
return True
|
127 |
-
return False
|
128 |
-
|
129 |
-
# =========================================
|
130 |
-
# CHB Memory: FAISS + KG + Facts
|
131 |
-
# =========================================
|
132 |
-
EMBEDDER = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device=DEVICE)
|
133 |
-
|
134 |
-
# FAISS memory
|
135 |
-
if os.path.exists(MEM_INDEX_FILE) and os.path.exists(MEM_META_FILE):
|
136 |
try:
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
except Exception:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
"
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
)
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
global SD_INPAINT
|
250 |
-
if SD_INPAINT is None:
|
251 |
-
SD_INPAINT = StableDiffusionInpaintPipeline.from_pretrained(
|
252 |
-
"runwayml/stable-diffusion-inpainting",
|
253 |
-
torch_dtype=torch.float16 if DEVICE=="cuda" else torch.float32
|
254 |
-
).to(DEVICE)
|
255 |
-
return SD_INPAINT
|
256 |
-
|
257 |
-
def load_whisper():
|
258 |
-
global WHISPER
|
259 |
-
if WHISPER is None:
|
260 |
-
# faster-whisper model names: tiny, base, small, medium, large-v3
|
261 |
-
model_size = os.environ.get("WHISPER_SIZE", "small")
|
262 |
-
WHISPER = WhisperModel(model_size, device=DEVICE, compute_type="float16" if DEVICE=="cuda" else "int8")
|
263 |
-
return WHISPER
|
264 |
-
|
265 |
-
def load_tts():
|
266 |
-
global TTS_MODEL
|
267 |
-
if TTS_MODEL is None:
|
268 |
-
# Multilingual XTTS v2 (supports voice cloning)
|
269 |
-
TTS_MODEL = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
|
270 |
-
return TTS_MODEL
|
271 |
-
|
272 |
-
# =========================================
|
273 |
-
# CHB Pipeline
|
274 |
-
# =========================================
|
275 |
-
def chb_enrich_context(query: str) -> str:
|
276 |
-
# Retrieve top-3 from FAISS to enrich prompt
|
277 |
-
hits = mem_search(query, top_k=3)
|
278 |
-
notes = []
|
279 |
-
for d, meta in hits:
|
280 |
-
notes.append(f"[mem@{time.strftime('%Y-%m-%d', time.localtime(meta['ts']))}] {meta['text']}")
|
281 |
-
return "\n".join(notes)
|
282 |
-
|
283 |
-
def chb_generate_reply(user_text: str) -> str:
|
284 |
-
# Build prompt with memory enrichment
|
285 |
-
ctx = chb_enrich_context(user_text)
|
286 |
-
prompt = ('You are a helpful, warm assistant. Use the references if useful.\n'
|
287 |
-
'References:\n'
|
288 |
-
f'{ctx}\n\n'
|
289 |
-
f'User: {user_text}\n'
|
290 |
-
'Assistant:')
|
291 |
-
gen = load_text_llm()
|
292 |
-
out = gen(prompt, max_new_tokens=256)
|
293 |
-
reply = out[0]["generated_text"]
|
294 |
-
# Store interaction in memory
|
295 |
-
mem_add(user_text, {"type": "user"})
|
296 |
-
mem_add(reply, {"type": "assistant"})
|
297 |
-
return reply
|
298 |
-
|
299 |
-
def chb_store_user_fact(text: str):
|
300 |
-
# Simple detection: "my name is X"
|
301 |
-
lower = text.lower()
|
302 |
-
if "my name is" in lower:
|
303 |
-
name = text.split("my name is", 1)[1].strip().split()[0]
|
304 |
-
add_fact("user", "name", name, confidence=1.0, source="user")
|
305 |
-
kg_add_fact("user", "name", name, confidence=1.0, source="user")
|
306 |
-
mem_add(f"User name = {name}", {"type":"fact"})
|
307 |
-
|
308 |
-
# =========================================
|
309 |
-
# Multimodal Feature Functions
|
310 |
-
# =========================================
|
311 |
-
def image_to_text(img: Image.Image) -> str:
|
312 |
-
proc, model = load_blip()
|
313 |
-
inputs = proc(images=img, return_tensors="pt").to(DEVICE)
|
314 |
-
out = model.generate(**inputs, max_new_tokens=64)
|
315 |
-
caption = proc.decode(out[0], skip_special_tokens=True)
|
316 |
-
mem_add(f"IMG2TXT: {caption}", {"type":"img2txt"})
|
317 |
-
return caption
|
318 |
-
|
319 |
-
def text_to_image(prompt: str, steps: int=20, guidance: float=7.5, seed: Optional[int]=None) -> Image.Image:
|
320 |
-
pipe = load_sd_txt2img()
|
321 |
-
if seed is None:
|
322 |
-
seed = random.randint(0, 2**32-1)
|
323 |
-
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
324 |
-
img = pipe(prompt, num_inference_steps=steps, guidance_scale=guidance, generator=generator).images[0]
|
325 |
-
mem_add(f"TXT2IMG prompt: {prompt}", {"type":"txt2img"})
|
326 |
-
return img
|
327 |
-
|
328 |
-
def edit_image(img: Image.Image, prompt: str, strength: float=0.6, steps: int=20) -> Image.Image:
|
329 |
-
pipe = load_sd_img2img()
|
330 |
-
img = img.convert("RGB")
|
331 |
-
edited = pipe(prompt=prompt, image=img, strength=strength, num_inference_steps=steps).images[0]
|
332 |
-
mem_add(f"IMGEDIT: {prompt}", {"type":"imgedit"})
|
333 |
-
return edited
|
334 |
-
|
335 |
-
def inpaint_image(img: Image.Image, mask: Image.Image, prompt: str, steps: int=20) -> Image.Image:
|
336 |
-
pipe = load_sd_inpaint()
|
337 |
-
img = img.convert("RGB")
|
338 |
-
mask = mask.convert("RGB")
|
339 |
-
out = pipe(prompt=prompt, image=img, mask_image=mask, num_inference_steps=steps).images[0]
|
340 |
-
mem_add(f"INPAINT: {prompt}", {"type":"inpaint"})
|
341 |
-
return out
|
342 |
-
|
343 |
-
def voice_to_text(audio_path: str) -> str:
|
344 |
-
model = load_whisper()
|
345 |
-
segments, info = model.transcribe(audio_path, beam_size=5)
|
346 |
-
text = " ".join([seg.text for seg in segments])
|
347 |
-
mem_add(f"ASR: {text[:200]}", {"type":"asr"})
|
348 |
-
return text
|
349 |
-
|
350 |
-
def text_to_voice(text: str, ref_audio: Optional[str]=None, speaker: Optional[str]=None, out_path: Optional[str]=None) -> str:
|
351 |
-
tts = load_tts()
|
352 |
-
if out_path is None:
|
353 |
-
out_path = os.path.join(DATA_DIR, f"tts_{int(time.time())}.wav")
|
354 |
-
if ref_audio:
|
355 |
-
tts.tts_to_file(text=text, file_path=out_path, speaker_wav=ref_audio, language="en")
|
356 |
-
else:
|
357 |
-
# default voice
|
358 |
-
tts.tts_to_file(text=text, file_path=out_path, speaker=speaker or "female-en-5", language="en")
|
359 |
-
mem_add(f"TTS: {text[:120]}", {"type":"tts"})
|
360 |
-
return out_path
|
361 |
-
|
362 |
-
def video_to_text(video_path: str, frames: int=8) -> str:
|
363 |
-
# Sample frames evenly, caption via BLIP, join
|
364 |
-
proc, model = load_blip()
|
365 |
-
cap = cv2.VideoCapture(video_path)
|
366 |
-
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1
|
367 |
-
idxs = np.linspace(0, total-1, num=min(frames, total), dtype=int)
|
368 |
-
captions = []
|
369 |
-
for i in idxs:
|
370 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, int(i))
|
371 |
-
ok, frame = cap.read()
|
372 |
-
if not ok:
|
373 |
continue
|
374 |
-
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
375 |
-
inputs = proc(images=img, return_tensors="pt").to(DEVICE)
|
376 |
-
out = model.generate(**inputs, max_new_tokens=32)
|
377 |
-
cap_text = proc.decode(out[0], skip_special_tokens=True)
|
378 |
-
captions.append(cap_text)
|
379 |
-
cap.release()
|
380 |
-
summary = " | ".join(captions) if captions else "No frames read."
|
381 |
-
mem_add(f"VID2TXT: {summary[:200]}", {"type":"vid2txt"})
|
382 |
-
return summary
|
383 |
-
|
384 |
-
def text_to_video_clip(prompt: str, seconds: int=3, fps: int=8) -> str:
|
385 |
-
# Lightweight approach: generate N images via SD and stitch into GIF/MP4
|
386 |
-
frames = []
|
387 |
-
n = seconds * fps
|
388 |
-
for i in range(n):
|
389 |
-
seed = random.randint(0, 2**32-1)
|
390 |
-
img = text_to_image(prompt + f", cinematic frame {i+1}", steps=15, guidance=7.0, seed=seed)
|
391 |
-
frames.append(np.array(img))
|
392 |
-
out_path = os.path.join(DATA_DIR, f"t2v_{int(time.time())}.mp4")
|
393 |
-
imageio.mimwrite(out_path, frames, fps=fps, quality=7)
|
394 |
-
mem_add(f"T2V: {prompt}", {"type":"t2v"})
|
395 |
-
return out_path
|
396 |
-
|
397 |
-
def video_edit_caption(video_path: str, caption_text: str) -> str:
|
398 |
-
clip = VideoFileClip(video_path)
|
399 |
-
txt = TextClip(caption_text, fontsize=40, color="white").set_duration(clip.duration).set_position(("center", "bottom"))
|
400 |
-
out = CompositeVideoClip([clip, txt])
|
401 |
-
out_path = os.path.join(DATA_DIR, f"captioned_{int(time.time())}.mp4")
|
402 |
-
out.write_videofile(out_path, codec="libx264", audio_codec="aac", verbose=False, logger=None)
|
403 |
-
mem_add(f"VIDCAP: {caption_text[:120]}", {"type":"vidcap"})
|
404 |
-
return out_path
|
405 |
-
|
406 |
-
def code_to_text(code: str, lang: str="python") -> str:
|
407 |
-
prompt = f"Explain this {lang} code step by step. Be concise.\n\n```{lang}\n{code}\n```"
|
408 |
-
return chb_generate_reply(prompt)
|
409 |
-
|
410 |
-
def text_to_code(spec: str, lang: str="python") -> str:
|
411 |
-
prompt = f"Write {lang} code that satisfies the following requirement. Provide only code:\n{spec}"
|
412 |
-
return chb_generate_reply(prompt)
|
413 |
-
|
414 |
-
def code_to_image(code: str, lang: str="python") -> Image.Image:
|
415 |
-
from pygments import highlight
|
416 |
-
from pygments.lexers import get_lexer_by_name
|
417 |
-
from pygments.formatters import ImageFormatter
|
418 |
-
lexer = get_lexer_by_name(lang, stripall=True)
|
419 |
-
formatter = ImageFormatter(font_name="DejaVu Sans Mono", line_numbers=True)
|
420 |
-
img_bytes = highlight(code, lexer, formatter)
|
421 |
-
img = Image.open(io.BytesIO(img_bytes))
|
422 |
-
mem_add(f"CODE2IMG {lang}", {"type":"code2img"})
|
423 |
-
return img
|
424 |
-
|
425 |
-
def voice_to_code(audio_path: str, lang: str="python") -> str:
|
426 |
-
spec = voice_to_text(audio_path)
|
427 |
-
return text_to_code(spec, lang)
|
428 |
-
|
429 |
-
def emoji_interpret(text: str) -> str:
|
430 |
-
import emoji as em
|
431 |
-
# Convert emoji to description
|
432 |
-
return em.demojize(text, language='en')
|
433 |
-
|
434 |
-
def emoji_generate(desc: str) -> Image.Image:
|
435 |
-
# Generate sticker-like image via SD
|
436 |
-
return text_to_image(f"high quality 2D sticker emoji of: {desc}, white background, bold outline, vector style", steps=25, guidance=8.5)
|
437 |
-
|
438 |
-
def file_reader(file_path: str) -> str:
|
439 |
-
ext = os.path.splitext(file_path)[1].lower()
|
440 |
-
if ext in [".txt", ".md", ".py", ".json", ".csv"]:
|
441 |
-
with open(file_path, "r", errors="ignore") as f:
|
442 |
-
return f.read()
|
443 |
-
if ext == ".pdf":
|
444 |
-
reader = PdfReader(file_path)
|
445 |
-
return "\n".join(page.extract_text() or "" for page in reader.pages)
|
446 |
-
if ext in [".docx"]:
|
447 |
-
d = docx.Document(file_path)
|
448 |
-
return "\n".join(p.text for p in d.paragraphs)
|
449 |
-
if ext in [".xlsx"]:
|
450 |
-
df = pd.read_excel(file_path)
|
451 |
-
return df.to_csv(index=False)
|
452 |
-
return "Unsupported file type."
|
453 |
-
|
454 |
-
def file_to_text(upload) -> str:
|
455 |
-
with open(upload.name, "wb") as f:
|
456 |
-
f.write(upload.read())
|
457 |
-
return file_reader(upload.name)
|
458 |
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
else:
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
#
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
reply_image = text_to_image(user_text)
|
497 |
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
else:
|
505 |
-
reply_text = chb_generate_reply(txt)
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
-
|
|
|
|
|
|
|
517 |
else:
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
else:
|
523 |
-
|
524 |
-
|
525 |
-
return reply_text, reply_image, reply_audio, reply_video
|
526 |
-
|
527 |
-
# =========================================
|
528 |
-
# FastAPI App
|
529 |
-
# =========================================
|
530 |
-
api = FastAPI(title="Close-to-Human Multimodal API")
|
531 |
-
api.add_middleware(
|
532 |
-
CORSMiddleware,
|
533 |
-
allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]
|
534 |
-
)
|
535 |
-
|
536 |
-
@api.get("/api/ping")
|
537 |
-
def ping():
|
538 |
-
return {"ok": True, "device": DEVICE, "api_key_hint": get_default_api_key()[:6] + "***"}
|
539 |
-
|
540 |
-
@api.post("/api/chat")
|
541 |
-
def api_chat(message: str, x_api_key: Optional[str] = Header(None)):
|
542 |
-
if not x_api_key or not verify_api_key(x_api_key):
|
543 |
-
raise HTTPException(status_code=401, detail="Invalid API key")
|
544 |
-
text, img, aud, vid = auto_route(message, None, None, None, None)
|
545 |
-
return {"text": text}
|
546 |
-
|
547 |
-
@api.post("/api/text-to-image")
|
548 |
-
def api_t2i(prompt: str, x_api_key: Optional[str] = Header(None)):
|
549 |
-
if not x_api_key or not verify_api_key(x_api_key):
|
550 |
-
raise HTTPException(status_code=401, detail="Invalid API key")
|
551 |
-
img = text_to_image(prompt)
|
552 |
-
buf = io.BytesIO()
|
553 |
-
img.save(buf, format="PNG")
|
554 |
-
b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
555 |
-
return {"image_base64": b64}
|
556 |
-
|
557 |
-
# =========================================
|
558 |
-
# Gradio UI
|
559 |
-
# =========================================
|
560 |
-
def ui_start_chat(user_text, image, audio, video, file):
|
561 |
-
audio_path = None
|
562 |
-
video_path = None
|
563 |
-
file_path = None
|
564 |
-
if audio is not None:
|
565 |
-
audio_path = audio
|
566 |
-
if video is not None:
|
567 |
-
video_path = video
|
568 |
-
if file is not None:
|
569 |
-
# gradio gives a temp path
|
570 |
-
file_path = file.name
|
571 |
-
text, img, aud, vid = auto_route(user_text, image, audio_path, video_path, file_path)
|
572 |
-
return text, img, aud, vid
|
573 |
-
|
574 |
-
def ui_text_chat(prompt):
|
575 |
-
return chb_generate_reply(prompt)
|
576 |
-
|
577 |
-
def ui_image_to_text(image):
|
578 |
-
return image_to_text(image)
|
579 |
-
|
580 |
-
def ui_text_to_image(prompt, steps, guidance):
|
581 |
-
return text_to_image(prompt, steps=steps, guidance=guidance)
|
582 |
-
|
583 |
-
def ui_image_edit(image, prompt, strength, steps):
|
584 |
-
return edit_image(image, prompt, strength=strength, steps=steps)
|
585 |
-
|
586 |
-
def ui_inpaint(image, mask, prompt, steps):
|
587 |
-
return inpaint_image(image, mask, prompt, steps=steps)
|
588 |
-
|
589 |
-
def ui_voice_to_text(audio):
|
590 |
-
return voice_to_text(audio)
|
591 |
-
|
592 |
-
def ui_text_to_voice(text, ref_audio):
|
593 |
-
out = text_to_voice(text, ref_audio=ref_audio)
|
594 |
-
return out
|
595 |
-
|
596 |
-
def ui_video_to_text(video):
|
597 |
-
return video_to_text(video)
|
598 |
-
|
599 |
-
def ui_text_to_video(prompt, seconds, fps):
|
600 |
-
return text_to_video_clip(prompt, seconds=seconds, fps=fps)
|
601 |
-
|
602 |
-
def ui_video_edit_caption(video, caption):
|
603 |
-
return video_edit_caption(video, caption)
|
604 |
-
|
605 |
-
def ui_text_to_code(text, lang):
|
606 |
-
return text_to_code(text, lang)
|
607 |
-
|
608 |
-
def ui_code_to_text(code, lang):
|
609 |
-
return code_to_text(code, lang)
|
610 |
-
|
611 |
-
def ui_code_to_image(code, lang):
|
612 |
-
return code_to_image(code, lang)
|
613 |
-
|
614 |
-
def ui_voice_to_code(audio, lang):
|
615 |
-
return voice_to_code(audio, lang)
|
616 |
-
|
617 |
-
def ui_emoji_interpret(text):
|
618 |
-
return emoji_interpret(text)
|
619 |
-
|
620 |
-
def ui_emoji_generate(desc):
|
621 |
-
return emoji_generate(desc)
|
622 |
-
|
623 |
-
def ui_file_reader(file):
|
624 |
-
return file_reader(file.name)
|
625 |
-
|
626 |
-
def ui_file_to_text(file):
|
627 |
-
return file_reader(file.name)
|
628 |
-
|
629 |
-
def ui_text_to_file(text, ext):
|
630 |
-
return text_to_file(text, ext)
|
631 |
-
|
632 |
-
def build_gradio():
|
633 |
-
with gr.Blocks(title="Close-to-Human Multimodal AI") as demo:
|
634 |
-
gr.Markdown("## Start chatting AI this — all-in-one, natural multimodal chat")
|
635 |
-
with gr.Tab("Start Chatting AI"):
|
636 |
-
with gr.Row():
|
637 |
-
user_text = gr.Textbox(label="Say anything… (text, emojis, ask for code, etc.)")
|
638 |
-
with gr.Row():
|
639 |
-
image = gr.Image(label="Optional image", type="pil")
|
640 |
-
audio = gr.Audio(label="Optional audio (wav/mp3)", type="filepath")
|
641 |
-
with gr.Row():
|
642 |
-
video = gr.Video(label="Optional video", format="mp4")
|
643 |
-
file = gr.File(label="Optional file")
|
644 |
-
go = gr.Button("Send")
|
645 |
-
out_text = gr.Textbox(label="AI reply (text)")
|
646 |
-
out_img = gr.Image(label="AI reply (image)")
|
647 |
-
out_aud = gr.Audio(label="AI reply (audio)", type="filepath")
|
648 |
-
out_vid = gr.Video(label="AI reply (video)")
|
649 |
-
go.click(ui_start_chat, [user_text, image, audio, video, file], [out_text, out_img, out_aud, out_vid])
|
650 |
-
|
651 |
-
with gr.Tab("Text Chat"):
|
652 |
-
prompt = gr.Textbox(label="Prompt")
|
653 |
-
btn = gr.Button("Ask")
|
654 |
-
answer = gr.Textbox(label="Answer")
|
655 |
-
btn.click(ui_text_chat, [prompt], [answer])
|
656 |
-
|
657 |
-
with gr.Tab("Image → Text"):
|
658 |
-
img = gr.Image(label="Image", type="pil")
|
659 |
-
btn2 = gr.Button("Caption")
|
660 |
-
cap = gr.Textbox(label="Caption")
|
661 |
-
btn2.click(ui_image_to_text, [img], [cap])
|
662 |
-
|
663 |
-
with gr.Tab("Text → Image"):
|
664 |
-
ti = gr.Textbox(label="Prompt")
|
665 |
-
steps = gr.Slider(5, 50, value=20, step=1, label="Steps")
|
666 |
-
guidance = gr.Slider(1.0, 12.0, value=7.5, step=0.5, label="Guidance")
|
667 |
-
btn3 = gr.Button("Generate")
|
668 |
-
img_out = gr.Image(label="Image")
|
669 |
-
btn3.click(ui_text_to_image, [ti, steps, guidance], [img_out])
|
670 |
-
|
671 |
-
with gr.Tab("Image Editing & Painting"):
|
672 |
-
base = gr.Image(label="Base image", type="pil")
|
673 |
-
edp = gr.Textbox(label="Edit prompt")
|
674 |
-
strength = gr.Slider(0.1, 1.0, value=0.6, step=0.1, label="Strength")
|
675 |
-
steps_e = gr.Slider(5, 50, value=20, step=1, label="Steps")
|
676 |
-
btn4 = gr.Button("Edit")
|
677 |
-
out_e = gr.Image(label="Edited image")
|
678 |
-
btn4.click(ui_image_edit, [base, edp, strength, steps_e], [out_e])
|
679 |
-
|
680 |
-
with gr.Tab("Image Inpainting"):
|
681 |
-
base2 = gr.Image(label="Base image", type="pil")
|
682 |
-
mask = gr.Image(label="Mask (white=paint)", type="pil")
|
683 |
-
inp = gr.Textbox(label="Inpaint prompt")
|
684 |
-
steps_i = gr.Slider(5, 50, value=20, step=1, label="Steps")
|
685 |
-
btn5 = gr.Button("Inpaint")
|
686 |
-
out_i = gr.Image(label="Inpainted")
|
687 |
-
btn5.click(ui_inpaint, [base2, mask, inp, steps_i], [out_i])
|
688 |
-
|
689 |
-
with gr.Tab("Voice → Text"):
|
690 |
-
a_in = gr.Audio(label="Audio", type="filepath")
|
691 |
-
a_btn = gr.Button("Transcribe")
|
692 |
-
a_out = gr.Textbox(label="Transcription")
|
693 |
-
a_btn.click(ui_voice_to_text, [a_in], [a_out])
|
694 |
-
|
695 |
-
with gr.Tab("Text → Voice"):
|
696 |
-
ttv_text = gr.Textbox(label="Text")
|
697 |
-
ref = gr.Audio(label="Reference voice (optional)", type="filepath")
|
698 |
-
ttv_btn = gr.Button("Synthesize")
|
699 |
-
ttv_out = gr.Audio(label="Speech", type="filepath")
|
700 |
-
ttv_btn.click(ui_text_to_voice, [ttv_text, ref], [ttv_out])
|
701 |
-
|
702 |
-
with gr.Tab("Voice Cloning → Code"):
|
703 |
-
vcc_in = gr.Audio(label="Instruction audio", type="filepath")
|
704 |
-
vcc_lang = gr.Dropdown(choices=["python","javascript","html","css","java","c","cpp","go","rust"], value="python", label="Language")
|
705 |
-
vcc_btn = gr.Button("Transcribe & Code")
|
706 |
-
vcc_out = gr.Code(label="Generated code")
|
707 |
-
vcc_btn.click(ui_voice_to_code, [vcc_in, vcc_lang], [vcc_out])
|
708 |
-
|
709 |
-
with gr.Tab("Video → Text"):
|
710 |
-
v_in = gr.Video(label="Video")
|
711 |
-
v_btn = gr.Button("Describe")
|
712 |
-
v_out = gr.Textbox(label="Description")
|
713 |
-
v_btn.click(ui_video_to_text, [v_in], [v_out])
|
714 |
-
|
715 |
-
with gr.Tab("Text → Video Clip"):
|
716 |
-
t2v_prompt = gr.Textbox(label="Prompt")
|
717 |
-
t2v_sec = gr.Slider(1, 5, value=3, step=1, label="Seconds")
|
718 |
-
t2v_fps = gr.Slider(4, 12, value=8, step=1, label="FPS")
|
719 |
-
t2v_btn = gr.Button("Generate Clip")
|
720 |
-
t2v_out = gr.Video(label="Video")
|
721 |
-
t2v_btn.click(ui_text_to_video, [t2v_prompt, t2v_sec, t2v_fps], [t2v_out])
|
722 |
-
|
723 |
-
with gr.Tab("Video Editing / Caption"):
|
724 |
-
ve_in = gr.Video(label="Video")
|
725 |
-
ve_text = gr.Textbox(label="Caption text")
|
726 |
-
ve_btn = gr.Button("Overlay Caption")
|
727 |
-
ve_out = gr.Video(label="Captioned Video")
|
728 |
-
ve_btn.click(ui_video_edit_caption, [ve_in, ve_text], [ve_out])
|
729 |
-
|
730 |
-
with gr.Tab("Text ↔ Code"):
|
731 |
-
with gr.Row():
|
732 |
-
t2c_text = gr.Textbox(label="Requirement → Code")
|
733 |
-
t2c_lang = gr.Dropdown(["python","javascript","html","css","java","c","cpp","go","rust"], value="python")
|
734 |
-
t2c_btn = gr.Button("Generate Code")
|
735 |
-
t2c_out = gr.Code(label="Code")
|
736 |
-
t2c_btn.click(ui_text_to_code, [t2c_text, t2c_lang], [t2c_out])
|
737 |
-
|
738 |
-
gr.Markdown("---")
|
739 |
-
|
740 |
-
with gr.Row():
|
741 |
-
c2t_code = gr.Code(label="Code → Explain")
|
742 |
-
c2t_lang = gr.Dropdown(["python","javascript","html","css","java","c","cpp","go","rust"], value="python")
|
743 |
-
c2t_btn = gr.Button("Explain Code")
|
744 |
-
c2t_out = gr.Textbox(label="Explanation")
|
745 |
-
c2t_btn.click(ui_code_to_text, [c2t_code, c2t_lang], [c2t_out])
|
746 |
-
|
747 |
-
gr.Markdown("---")
|
748 |
-
|
749 |
-
with gr.Row():
|
750 |
-
c2i_code = gr.Code(label="Code → Image (rendered)")
|
751 |
-
c2i_lang = gr.Dropdown(["python","javascript","html","css","java","c","cpp","go","rust"], value="python")
|
752 |
-
c2i_btn = gr.Button("Render Image")
|
753 |
-
c2i_out = gr.Image(label="Code Image")
|
754 |
-
c2i_btn.click(ui_code_to_image, [c2i_code, c2i_lang], [c2i_out])
|
755 |
-
|
756 |
-
with gr.Tab("Emoji / Sticker / GIF"):
|
757 |
-
em_text = gr.Textbox(label="Emoji/Sticker/GIF (interpret)")
|
758 |
-
em_btn = gr.Button("Interpret")
|
759 |
-
em_out = gr.Textbox(label="Meaning")
|
760 |
-
em_btn.click(ui_emoji_interpret, [em_text], [em_out])
|
761 |
-
|
762 |
-
gr.Markdown("---")
|
763 |
-
|
764 |
-
em_gen = gr.Textbox(label="Describe a sticker to generate")
|
765 |
-
em_gen_btn = gr.Button("Generate Sticker")
|
766 |
-
em_gen_out = gr.Image(label="Sticker")
|
767 |
-
em_gen_btn.click(ui_emoji_generate, [em_gen], [em_gen_out])
|
768 |
-
|
769 |
-
with gr.Tab("File Reader / Convert"):
|
770 |
-
fr_file = gr.File(label="File")
|
771 |
-
fr_btn = gr.Button("Read File")
|
772 |
-
fr_out = gr.Textbox(label="File Content", lines=15)
|
773 |
-
fr_btn.click(ui_file_reader, [fr_file], [fr_out])
|
774 |
-
|
775 |
-
gr.Markdown("---")
|
776 |
-
|
777 |
-
ft_file = gr.File(label="File → Text")
|
778 |
-
ft_btn = gr.Button("Convert")
|
779 |
-
ft_out = gr.Textbox(label="Extracted Text", lines=15)
|
780 |
-
ft_btn.click(ui_file_to_text, [ft_file], [ft_out])
|
781 |
-
|
782 |
-
gr.Markdown("---")
|
783 |
-
|
784 |
-
ttf_text = gr.Textbox(label="Text → File")
|
785 |
-
ttf_ext = gr.Dropdown(["txt","docx","csv"], value="txt", label="File type")
|
786 |
-
ttf_btn = gr.Button("Create File")
|
787 |
-
ttf_out = gr.File(label="Download")
|
788 |
-
ttf_btn.click(ui_text_to_file, [ttf_text, ttf_ext], [ttf_out])
|
789 |
-
|
790 |
-
with gr.Tab("API & Keys"):
|
791 |
-
gr.Markdown("### Your API Key")
|
792 |
-
key_box = gr.Textbox(value=get_default_api_key(), label="X-API-Key", interactive=False)
|
793 |
-
gr.Markdown("**Use with header `X-API-Key` on endpoints:** `/api/chat`, `/api/text-to-image`")
|
794 |
-
gr.Markdown("**UI Port:** 7860 **API Port:** 7861")
|
795 |
-
gr.Markdown("**Server Device:** " + DEVICE)
|
796 |
-
|
797 |
-
return demo
|
798 |
-
|
799 |
-
# =========================================
|
800 |
-
# Launch FastAPI + Gradio together
|
801 |
-
# =========================================
|
802 |
-
def start_servers():
|
803 |
-
demo = build_gradio()
|
804 |
-
# Mount Gradio root hint
|
805 |
-
@api.get("/")
|
806 |
-
def root():
|
807 |
-
return {"message": "Go to the Gradio UI on port 7860. API lives on port 7861."}
|
808 |
-
|
809 |
-
# Run Gradio as background thread
|
810 |
-
def run_gradio():
|
811 |
-
demo.queue().launch(server_name="0.0.0.0", server_port=7860, show_api=False, share=False)
|
812 |
-
|
813 |
-
th = threading.Thread(target=run_gradio, daemon=True)
|
814 |
-
th.start()
|
815 |
-
# Run FastAPI (uvicorn)
|
816 |
-
uvicorn.run(api, host="0.0.0.0", port=7861)
|
817 |
|
818 |
if __name__ == "__main__":
|
819 |
-
|
820 |
-
print("Device:", DEVICE)
|
821 |
-
print("API key:", get_default_api_key())
|
822 |
-
start_servers()
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# app.py - Front-end dashboard for Multimodular v7 (multimodal)
|
3 |
+
# Place this file alongside your multimodular module (compact or expanded).
|
4 |
+
|
5 |
+
import os, time, sys, json, pathlib
|
6 |
+
|
7 |
+
# ---- Config: brain module names to try ----
|
8 |
+
CANDIDATE_MODULES = [
|
9 |
+
"multimodular_modul_v7", # compact name used earlier
|
10 |
+
"multimodular_modul_v7_expanded", # expanded package name used earlier
|
11 |
+
"multimodular_modul version 7.0", # fallback if you saved exact name (unlikely)
|
12 |
+
]
|
13 |
+
|
14 |
+
# ---- Boot splash ----
|
15 |
+
def boot_splash():
|
16 |
+
os.system("cls" if os.name == "nt" else "clear")
|
17 |
+
logo = r"""
|
18 |
+
██████╗██╗ ██╗██████╗
|
19 |
+
██╔════╝██║ ██║██╔══██╗
|
20 |
+
██║ ███████║██████╔╝
|
21 |
+
██║ ██╔══██║██╔═══╝
|
22 |
+
╚██████╗██║ ██║██║
|
23 |
+
╚═════╝╚═╝ ╚═╝╚═╝
|
24 |
+
Close-to-Human Brain v7.0
|
25 |
+
"""
|
26 |
+
print(logo)
|
27 |
+
print("Initializing Universal Brain...")
|
28 |
+
steps = [
|
29 |
+
"Loading Core Modules",
|
30 |
+
"Starting Local DB",
|
31 |
+
"Bringing up CTB pipeline",
|
32 |
+
"Starting Global Sync (if configured)",
|
33 |
+
"Activating Creative Skill Vault",
|
34 |
+
"Launching Dashboard"
|
35 |
+
]
|
36 |
+
for s in steps:
|
37 |
+
print(" →", s + "...")
|
38 |
+
time.sleep(0.6)
|
39 |
+
print("\n✅ Ready!\n")
|
40 |
+
time.sleep(0.3)
|
41 |
+
|
42 |
+
# ---- Adaptive loader for your brain module ----
|
43 |
+
def load_brain():
|
44 |
+
for name in CANDIDATE_MODULES:
|
45 |
+
try:
|
46 |
+
mod = __import__(name)
|
47 |
+
agent = None
|
48 |
+
# common exported instances/names:
|
49 |
+
if hasattr(mod, "AGENT"):
|
50 |
+
agent = getattr(mod, "AGENT")
|
51 |
+
elif hasattr(mod, "agent"):
|
52 |
+
agent = getattr(mod, "agent")
|
53 |
+
else:
|
54 |
+
# try to instantiate a class if present
|
55 |
+
cls_names = ["SuperAgentV7", "SuperAgent", "MultimodalBrain", "Agent", "Brain"]
|
56 |
+
for cls in cls_names:
|
57 |
+
if hasattr(mod, cls):
|
58 |
+
try:
|
59 |
+
agent = getattr(mod, cls)()
|
60 |
+
break
|
61 |
+
except Exception:
|
62 |
+
agent = None
|
63 |
+
# as last resort, if module defines functions, return module as agent
|
64 |
+
if agent is None:
|
65 |
+
agent = mod
|
66 |
+
print(f"[INFO] Loaded brain module: {name}")
|
67 |
+
return agent
|
68 |
+
except Exception:
|
69 |
+
continue
|
70 |
+
print("[WARN] Could not auto-import expected brain module names.")
|
71 |
+
print("Place your multimodular module in the same folder and name it one of:", ", ".join(CANDIDATE_MODULES))
|
72 |
+
return None
|
73 |
+
|
74 |
+
# ---- Helpers: flexible invocation for common brain actions ----
|
75 |
+
def brain_call(agent, fn_names, *args, **kwargs):
|
76 |
+
"""Try to call first available function name on agent; return (ok, result)."""
|
77 |
+
if agent is None:
|
78 |
+
return False, "Brain not loaded"
|
79 |
+
for fn in fn_names:
|
80 |
+
if callable(getattr(agent, fn, None)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
try:
|
82 |
+
return True, getattr(agent, fn)(*args, **kwargs)
|
83 |
+
except Exception as e:
|
84 |
+
return False, f"error calling {fn}: {e}"
|
85 |
+
# If agent itself exposes a 'ctb_handle' as attribute inside (e.g., agent.chb.ctb_handle)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
try:
|
87 |
+
# try nested common path: agent.chb.ctb_handle
|
88 |
+
chb = getattr(agent, "chb", None)
|
89 |
+
if chb:
|
90 |
+
for fn in fn_names:
|
91 |
+
if callable(getattr(chb, fn, None)):
|
92 |
+
try:
|
93 |
+
return True, getattr(chb, fn)(*args, **kwargs)
|
94 |
+
except Exception as e:
|
95 |
+
return False, f"error calling chb.{fn}: {e}"
|
96 |
except Exception:
|
97 |
+
pass
|
98 |
+
return False, f"none of {fn_names} found on agent"
|
99 |
+
|
100 |
+
# ---- UI functions ----
|
101 |
+
menus = {
|
102 |
+
"1": "💬 Chat with AI (All Features in One Chat)",
|
103 |
+
"2": "🔎 Search Knowledge Base",
|
104 |
+
"3": "📤 Upload Media for Learning",
|
105 |
+
"4": "💾 Backup / Restore Brain (download backup)",
|
106 |
+
"5": "🎨 View Creative Skill Vault (top skills)",
|
107 |
+
"6": "🔁 Global Brain Sync Status",
|
108 |
+
"7": "🛠 Developer API Options",
|
109 |
+
"8": "📴 Offline Mode / Toggle",
|
110 |
+
"9": "❌ Exit"
|
111 |
+
}
|
112 |
+
|
113 |
+
def show_menu():
|
114 |
+
print("=== CHB v7.0 Main Menu ===")
|
115 |
+
for k in sorted(menus.keys(), key=int):
|
116 |
+
print(f"[{k}] {menus[k]}")
|
117 |
+
|
118 |
+
# ---- Media helpers (simple) ----
|
119 |
+
def read_file_as_payload(path):
|
120 |
+
p = pathlib.Path(path)
|
121 |
+
if not p.exists():
|
122 |
+
return None, f"file not found: {path}"
|
123 |
+
# minimal payload: path & size
|
124 |
+
try:
|
125 |
+
meta = {"path": str(p.resolve()), "size": p.stat().st_size}
|
126 |
+
return {"path": str(p.resolve()), "meta": meta}, None
|
127 |
+
except Exception as e:
|
128 |
+
return None, f"read error: {e}"
|
129 |
+
|
130 |
+
# ---- Menu 1: Multimodal chat loop ----
|
131 |
+
def multimodal_chat(agent):
|
132 |
+
print("\n=== Multimodal AI Chat ===")
|
133 |
+
print("Type naturally. Special commands:")
|
134 |
+
print(" /upload <path> - attach a file (image, video, audio)")
|
135 |
+
print(" /search <query> - run user-device search (plan + return style)")
|
136 |
+
print(" /skills <tag> - show top creative skills for tag")
|
137 |
+
print(" /backup - create a new backup and show path")
|
138 |
+
print(" /help - show this help")
|
139 |
+
print(" /exit - return to main menu\n")
|
140 |
+
while True:
|
141 |
+
try:
|
142 |
+
user = input("You: ").strip()
|
143 |
+
except (KeyboardInterrupt, EOFError):
|
144 |
+
print("\nReturning to main menu.")
|
145 |
+
return
|
146 |
+
if not user:
|
147 |
+
continue
|
148 |
+
if user.lower() in ("/exit", "exit", "quit"):
|
149 |
+
print("Returning to main menu.\n")
|
150 |
+
return
|
151 |
+
if user.startswith("/upload "):
|
152 |
+
path = user[len("/upload "):].strip().strip('"').strip("'")
|
153 |
+
payload, err = read_file_as_payload(path)
|
154 |
+
if err:
|
155 |
+
print("Error:", err); continue
|
156 |
+
# Build a simple plan_results-like structure and submit to brain
|
157 |
+
# plan_results should include images/videos/audios lists if agent expects that shape
|
158 |
+
plan_results = {}
|
159 |
+
suffix = pathlib.Path(path).suffix.lower()
|
160 |
+
if suffix in (".png", ".jpg", ".jpeg", ".webp", ".bmp"):
|
161 |
+
plan_results["images"] = [{"path": payload["path"], "quality_score": 0.9, "caption": "", "tags": []}]
|
162 |
+
elif suffix in (".mp4", ".mov", ".mkv", ".webm"):
|
163 |
+
plan_results["videos"] = [{"path": payload["path"], "quality_score": 0.8, "caption": "", "tags": []}]
|
164 |
+
elif suffix in (".mp3", ".wav", ".m4a", ".ogg"):
|
165 |
+
plan_results["audios"] = [{"path": payload["path"], "quality_score": 0.8, "caption": "", "tags": []}]
|
166 |
+
else:
|
167 |
+
plan_results["files"] = [{"path": payload["path"], "meta": payload["meta"]}]
|
168 |
+
ok, res = brain_call(agent, ["submit_plan_results", "handle_plan_results", "submit_results", "submit_plan"], plan_id="upload_"+str(int(time.time())), results=plan_results)
|
169 |
+
if ok:
|
170 |
+
print("AI: (processed upload) ->", res)
|
171 |
+
else:
|
172 |
+
print("AI: upload processed locally, but brain call failed:", res)
|
173 |
+
continue
|
174 |
+
if user.startswith("/search "):
|
175 |
+
q = user[len("/search "):].strip()
|
176 |
+
ok, plan = brain_call(agent, ["plan_search", "plan"], q)
|
177 |
+
if ok:
|
178 |
+
print("AI: Generated search plan. (Run this plan on client and submit results.)")
|
179 |
+
print(json.dumps(plan, indent=2) if isinstance(plan, dict) else plan)
|
180 |
+
else:
|
181 |
+
print("AI: search plan generation failed:", plan)
|
182 |
+
continue
|
183 |
+
if user.startswith("/skills "):
|
184 |
+
tag = user[len("/skills "):].strip()
|
185 |
+
ok, skills = brain_call(agent, ["top_skills", "top_skill", "top_by_tag"], tag, 5)
|
186 |
+
if ok:
|
187 |
+
print("Top skills for", tag, ":", skills)
|
188 |
+
else:
|
189 |
+
print("Could not fetch skills:", skills)
|
190 |
+
continue
|
191 |
+
if user.strip() == "/backup":
|
192 |
+
ok, path = brain_call(agent, ["download_latest_backup", "latest_backup", "get_latest_backup"])
|
193 |
+
if ok and path:
|
194 |
+
print("Latest backup path:", path)
|
195 |
+
else:
|
196 |
+
# try to create a new backup if method available
|
197 |
+
ok2, created = brain_call(agent, ["backup_create", "create_backup", "create_backup_zip"])
|
198 |
+
if ok2:
|
199 |
+
print("Created backup:", created)
|
200 |
+
else:
|
201 |
+
print("Backup not available:", path or created)
|
202 |
+
continue
|
203 |
+
if user.strip() == "/help":
|
204 |
+
print("Commands: /upload, /search, /skills, /backup, /exit")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
# Regular freeform input: call ctb_handle if present, else agent.chat or agent.chat()
|
208 |
+
# Prefer 'ctb_handle' (Close-to-Human Brain multimodal pipeline), fall back to 'chat' or 'plan_search'
|
209 |
+
ok, resp = brain_call(agent, ["ctb_handle", "handle_input", "chat", "chat_message", "chat_query"], input_data=user)
|
210 |
+
if not ok:
|
211 |
+
# try more permissive call signatures
|
212 |
+
try:
|
213 |
+
# some agents expect chat(text)
|
214 |
+
resp = agent.chat(user)
|
215 |
+
print("AI:", resp)
|
216 |
+
except Exception as e:
|
217 |
+
print("AI call failed:", resp)
|
218 |
+
else:
|
219 |
+
print("AI:", resp)
|
220 |
+
|
221 |
+
# ---- Menus 2..9 simple wrappers that call brain functions if present ----
|
222 |
+
def menu_search_kb(agent):
|
223 |
+
q = input("Enter search query: ").strip()
|
224 |
+
if not q: return
|
225 |
+
ok, res = brain_call(agent, ["search_facts", "facts_search", "query_facts"], q)
|
226 |
+
if ok:
|
227 |
+
print("Results:", res)
|
228 |
else:
|
229 |
+
print("Search failed:", res)
|
230 |
+
|
231 |
+
def menu_upload_media(agent):
|
232 |
+
path = input("Path to media file: ").strip()
|
233 |
+
if not path: return
|
234 |
+
payload, err = read_file_as_payload(path)
|
235 |
+
if err:
|
236 |
+
print("Error:", err); return
|
237 |
+
# submit via same upload command as chat
|
238 |
+
plan_results = {}
|
239 |
+
suffix = pathlib.Path(path).suffix.lower()
|
240 |
+
if suffix in (".png", ".jpg", ".jpeg", ".webp", ".bmp"):
|
241 |
+
plan_results["images"] = [{"path": payload["path"], "quality_score": 0.9}]
|
242 |
+
elif suffix in (".mp4", ".mov", ".mkv"):
|
243 |
+
plan_results["videos"] = [{"path": payload["path"], "quality_score": 0.8}]
|
244 |
+
elif suffix in (".mp3", ".wav"):
|
245 |
+
plan_results["audios"] = [{"path": payload["path"], "quality_score": 0.8}]
|
246 |
+
else:
|
247 |
+
plan_results["files"] = [{"path": payload["path"], "meta": payload["meta"]}]
|
248 |
+
ok, res = brain_call(agent, ["submit_plan_results", "handle_plan_results"], plan_id="manual_upload_"+str(int(time.time())), results=plan_results)
|
249 |
+
if ok:
|
250 |
+
print("Upload processed:", res)
|
251 |
+
else:
|
252 |
+
print("Upload failed:", res)
|
|
|
253 |
|
254 |
+
def menu_backup_download(agent):
|
255 |
+
ok, p = brain_call(agent, ["download_latest_backup", "latest_backup", "get_latest_backup"])
|
256 |
+
if ok and p:
|
257 |
+
print("Latest backup:", p)
|
258 |
+
else:
|
259 |
+
print("No backup available or call failed:", p)
|
|
|
|
|
260 |
|
261 |
+
def menu_view_vault(agent):
|
262 |
+
tag = input("Enter skill tag (or blank to list all): ").strip()
|
263 |
+
if tag:
|
264 |
+
ok, s = brain_call(agent, ["top_skills", "top_by_tag"], tag, 10)
|
265 |
+
else:
|
266 |
+
ok, s = brain_call(agent, ["list_skills", "get_skills"], )
|
267 |
+
if ok:
|
268 |
+
print("Skills:", s)
|
269 |
+
else:
|
270 |
+
print("Failed to retrieve skills:", s)
|
271 |
|
272 |
+
def menu_sync_status(agent):
|
273 |
+
ok, st = brain_call(agent, ["global_sync_status", "sync_status", "get_sync_status"])
|
274 |
+
if ok:
|
275 |
+
print("Global Sync Status:", st)
|
276 |
+
else:
|
277 |
+
print("Global sync status not available:", st)
|
278 |
+
|
279 |
+
def menu_dev_api(agent):
|
280 |
+
print("Developer API options:")
|
281 |
+
print(" 1) Add/Integrate module from file")
|
282 |
+
print(" 2) List modules")
|
283 |
+
choice = input("choice: ").strip()
|
284 |
+
if choice == "1":
|
285 |
+
path = input("Path to module (py or base64-wasm): ").strip()
|
286 |
+
payload, err = read_file_as_payload(path)
|
287 |
+
if err:
|
288 |
+
print("Error:", err); return
|
289 |
+
code = ""
|
290 |
+
try:
|
291 |
+
code = open(payload["path"], "rb").read().decode("utf-8")
|
292 |
+
except Exception:
|
293 |
+
import base64
|
294 |
+
code = base64.b64encode(open(payload["path"], "rb").read()).decode()
|
295 |
+
name = input("Module name (short): ").strip() or f"mod_{int(time.time())}"
|
296 |
+
ok, res = brain_call(agent, ["add_module", "integrate_module"], name, code, None)
|
297 |
+
print("Result:", res)
|
298 |
+
elif choice == "2":
|
299 |
+
ok, res = brain_call(agent, ["list_modules", "get_modules"])
|
300 |
+
print("Modules:", res if ok else "failed:"+str(res))
|
301 |
+
else:
|
302 |
+
print("cancel")
|
303 |
|
304 |
+
def menu_offline_toggle(agent):
|
305 |
+
ok, st = brain_call(agent, ["toggle_offline", "set_offline", "offline_toggle"])
|
306 |
+
if ok:
|
307 |
+
print("Offline toggled:", st)
|
308 |
else:
|
309 |
+
print("Offline toggle not available; try starting/stopping network in your environment.")
|
310 |
+
|
311 |
+
# ---- Main loop ----
|
312 |
+
def main():
|
313 |
+
boot_splash()
|
314 |
+
agent = load_brain()
|
315 |
+
if agent is None:
|
316 |
+
print("Brain not loaded. You can still use app UI, but brain-dependent actions will fail.")
|
317 |
+
while True:
|
318 |
+
show_menu()
|
319 |
+
choice = input("Select: ").strip()
|
320 |
+
if choice == "1":
|
321 |
+
multimodal_chat(agent)
|
322 |
+
elif choice == "2":
|
323 |
+
menu_search_kb(agent)
|
324 |
+
elif choice == "3":
|
325 |
+
menu_upload_media(agent)
|
326 |
+
elif choice == "4":
|
327 |
+
menu_backup_download(agent)
|
328 |
+
elif choice == "5":
|
329 |
+
menu_view_vault(agent)
|
330 |
+
elif choice == "6":
|
331 |
+
menu_sync_status(agent)
|
332 |
+
elif choice == "7":
|
333 |
+
menu_dev_api(agent)
|
334 |
+
elif choice == "8":
|
335 |
+
menu_offline_toggle(agent)
|
336 |
+
elif choice == "9":
|
337 |
+
print("Goodbye.")
|
338 |
+
break
|
339 |
else:
|
340 |
+
print("Unknown option; try again.\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
if __name__ == "__main__":
|
343 |
+
main()
|
|
|
|
|
|