Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,112 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from multimodal_module import MultiModalChatModule
|
4 |
-
import asyncio
|
5 |
|
6 |
# Initialize module
|
7 |
mm = MultiModalChatModule()
|
8 |
|
9 |
-
# Environment configuration
|
10 |
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
|
11 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
|
13 |
-
async
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
def process_image(
|
21 |
-
|
|
|
22 |
|
23 |
def chat(text, user_id, lang):
|
24 |
-
return
|
25 |
|
26 |
def generate_image(prompt, user_id):
|
27 |
-
return
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
))
|
32 |
|
33 |
with gr.Blocks(title="Multimodal AI Assistant") as app:
|
34 |
-
gr.Markdown("## π Multimodal AI Assistant")
|
35 |
-
|
36 |
with gr.Tab("π¬ Text Chat"):
|
37 |
with gr.Row():
|
38 |
-
|
39 |
lang = gr.Dropdown(["en", "es", "fr", "de"], label="Language", value="en")
|
40 |
chat_input = gr.Textbox(label="Your Message")
|
41 |
chat_output = gr.Textbox(label="AI Response", interactive=False)
|
42 |
chat_btn = gr.Button("Send")
|
43 |
-
|
|
|
44 |
with gr.Tab("ποΈ Voice"):
|
45 |
-
voice_input = gr.Audio(
|
46 |
voice_user = gr.Textbox(label="User ID", value="123")
|
47 |
voice_output = gr.JSON(label="Analysis Results")
|
48 |
voice_btn = gr.Button("Process")
|
49 |
-
|
|
|
50 |
with gr.Tab("πΌοΈ Images"):
|
51 |
with gr.Tab("Describe"):
|
52 |
-
img_input = gr.Image(type="filepath")
|
53 |
img_user = gr.Textbox(label="User ID", value="123")
|
54 |
img_output = gr.Textbox(label="Description")
|
55 |
img_btn = gr.Button("Describe")
|
56 |
-
|
|
|
57 |
with gr.Tab("Generate"):
|
58 |
gen_prompt = gr.Textbox(label="Prompt")
|
59 |
gen_user = gr.Textbox(label="User ID", value="123")
|
60 |
gen_output = gr.Image(label="Generated Image")
|
61 |
gen_btn = gr.Button("Generate")
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
-
|
71 |
-
|
72 |
-
server_port=7860,
|
73 |
-
share=False
|
74 |
-
)
|
|
|
1 |
import os
|
2 |
+
import shutil
|
3 |
+
import asyncio
|
4 |
import gradio as gr
|
5 |
from multimodal_module import MultiModalChatModule
|
|
|
6 |
|
7 |
# Initialize module
|
8 |
mm = MultiModalChatModule()
|
9 |
|
10 |
+
# Environment configuration (already safe but keep)
|
11 |
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
|
12 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
13 |
|
14 |
+
# A tiny async-compatible "file-like" wrapper so your multimodal_module methods
|
15 |
+
# (which expect objects with an async download_to_drive(...) method) work
|
16 |
+
class AsyncPathWrapper:
|
17 |
+
def __init__(self, path: str):
|
18 |
+
self.path = path
|
19 |
+
|
20 |
+
async def download_to_drive(self, dst_path: str):
|
21 |
+
# perform copy synchronously but keep API async
|
22 |
+
try:
|
23 |
+
os.makedirs(os.path.dirname(dst_path), exist_ok=True)
|
24 |
+
shutil.copy(self.path, dst_path)
|
25 |
+
except Exception as e:
|
26 |
+
# raise to allow upper-level error handling
|
27 |
+
raise
|
28 |
+
|
29 |
+
# Helper to call async methods from sync Gradio callbacks
|
30 |
+
def run_async(fn, *args, **kwargs):
|
31 |
+
return asyncio.run(fn(*args, **kwargs))
|
32 |
+
|
33 |
+
# Wrappers that adapt Gradio returned file paths to the module's expected interface
|
34 |
+
def _wrap_audio(audio_path):
|
35 |
+
if not audio_path:
|
36 |
+
return None
|
37 |
+
return AsyncPathWrapper(audio_path)
|
38 |
+
|
39 |
+
def _wrap_image(image_path):
|
40 |
+
if not image_path:
|
41 |
+
return None
|
42 |
+
return AsyncPathWrapper(image_path)
|
43 |
+
|
44 |
+
def _wrap_file(file_path):
|
45 |
+
if not file_path:
|
46 |
+
return None
|
47 |
+
return AsyncPathWrapper(file_path)
|
48 |
|
49 |
+
# Gradio binding functions
|
50 |
+
def process_voice(audio_filepath, user_id):
|
51 |
+
# mm.process_voice_message expects an object with download_to_drive
|
52 |
+
wrapped = _wrap_audio(audio_filepath)
|
53 |
+
return run_async(mm.process_voice_message, wrapped, int(user_id))
|
54 |
|
55 |
+
def process_image(image_filepath, user_id):
|
56 |
+
wrapped = _wrap_image(image_filepath)
|
57 |
+
return run_async(mm.process_image_message, wrapped, int(user_id))
|
58 |
|
59 |
def chat(text, user_id, lang):
|
60 |
+
return run_async(mm.generate_response, text, int(user_id), lang)
|
61 |
|
62 |
def generate_image(prompt, user_id):
|
63 |
+
return run_async(mm.generate_image_from_text, prompt, int(user_id))
|
64 |
+
|
65 |
+
def process_file(file_path, user_id):
|
66 |
+
wrapped = _wrap_file(file_path)
|
67 |
+
return run_async(mm.process_file, wrapped, int(user_id))
|
68 |
|
69 |
with gr.Blocks(title="Multimodal AI Assistant") as app:
|
70 |
+
gr.Markdown("## π Multimodal AI Assistant (Space-friendly)")
|
71 |
+
|
72 |
with gr.Tab("π¬ Text Chat"):
|
73 |
with gr.Row():
|
74 |
+
user_id_txt = gr.Textbox(label="User ID", value="123")
|
75 |
lang = gr.Dropdown(["en", "es", "fr", "de"], label="Language", value="en")
|
76 |
chat_input = gr.Textbox(label="Your Message")
|
77 |
chat_output = gr.Textbox(label="AI Response", interactive=False)
|
78 |
chat_btn = gr.Button("Send")
|
79 |
+
chat_btn.click(fn=chat, inputs=[chat_input, user_id_txt, lang], outputs=chat_output)
|
80 |
+
|
81 |
with gr.Tab("ποΈ Voice"):
|
82 |
+
voice_input = gr.Audio(source="microphone", type="filepath", label="Speak or upload an audio file")
|
83 |
voice_user = gr.Textbox(label="User ID", value="123")
|
84 |
voice_output = gr.JSON(label="Analysis Results")
|
85 |
voice_btn = gr.Button("Process")
|
86 |
+
voice_btn.click(fn=process_voice, inputs=[voice_input, voice_user], outputs=voice_output)
|
87 |
+
|
88 |
with gr.Tab("πΌοΈ Images"):
|
89 |
with gr.Tab("Describe"):
|
90 |
+
img_input = gr.Image(type="filepath", label="Upload an image")
|
91 |
img_user = gr.Textbox(label="User ID", value="123")
|
92 |
img_output = gr.Textbox(label="Description")
|
93 |
img_btn = gr.Button("Describe")
|
94 |
+
img_btn.click(fn=process_image, inputs=[img_input, img_user], outputs=img_output)
|
95 |
+
|
96 |
with gr.Tab("Generate"):
|
97 |
gen_prompt = gr.Textbox(label="Prompt")
|
98 |
gen_user = gr.Textbox(label="User ID", value="123")
|
99 |
gen_output = gr.Image(label="Generated Image")
|
100 |
gen_btn = gr.Button("Generate")
|
101 |
+
gen_btn.click(fn=generate_image, inputs=[gen_prompt, gen_user], outputs=gen_output)
|
102 |
+
|
103 |
+
with gr.Tab("π Files"):
|
104 |
+
file_input = gr.File(file_count="single", label="Upload a document (pdf, txt, docx)")
|
105 |
+
file_user = gr.Textbox(label="User ID", value="123")
|
106 |
+
file_output = gr.JSON(label="File Processing Result")
|
107 |
+
file_btn = gr.Button("Process File")
|
108 |
+
file_btn.click(fn=process_file, inputs=[file_input, file_user], outputs=file_output)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
+
# Let Spaces manage server settings. This still works locally.
|
112 |
+
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|
|
|
|
|
|