Spaces:
Running
Running
Upload multimodal_module.py
Browse files- multimodal_module.py +644 -0
multimodal_module.py
ADDED
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# multimodal_module.py
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
import subprocess
|
5 |
+
import tempfile
|
6 |
+
import shutil
|
7 |
+
import asyncio
|
8 |
+
from datetime import datetime
|
9 |
+
from typing import Dict, List, Optional, Any
|
10 |
+
import io
|
11 |
+
import uuid
|
12 |
+
|
13 |
+
# Core ML libs
|
14 |
+
import torch
|
15 |
+
from transformers import (
|
16 |
+
pipeline,
|
17 |
+
AutoModelForSeq2SeqLM,
|
18 |
+
AutoTokenizer,
|
19 |
+
Wav2Vec2Processor,
|
20 |
+
Wav2Vec2ForSequenceClassification,
|
21 |
+
)
|
22 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
|
23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer as HFTokenizer
|
24 |
+
|
25 |
+
# Audio / speech
|
26 |
+
import librosa
|
27 |
+
import speech_recognition as sr
|
28 |
+
from gtts import gTTS
|
29 |
+
|
30 |
+
# Image, video, files
|
31 |
+
from PIL import Image, ImageOps
|
32 |
+
import imageio_ffmpeg as ffmpeg
|
33 |
+
import imageio
|
34 |
+
import moviepy.editor as mp
|
35 |
+
import fitz # PyMuPDF for PDFs
|
36 |
+
|
37 |
+
# Misc
|
38 |
+
from langdetect import DetectorFactory
|
39 |
+
DetectorFactory.seed = 0
|
40 |
+
|
41 |
+
# Optional: safety-check toggles
|
42 |
+
USE_SAFETY_CHECKER = False
|
43 |
+
|
44 |
+
# Helper for temp files
|
45 |
+
def _tmp_path(suffix=""):
|
46 |
+
return os.path.join(tempfile.gettempdir(), f"{uuid.uuid4().hex}{suffix}")
|
47 |
+
|
48 |
+
class MultiModalChatModule:
|
49 |
+
"""
|
50 |
+
Full-power multimodal module.
|
51 |
+
- Lazy-loads big models on first use.
|
52 |
+
- Methods are async-friendly.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, chat_history_file: str = "chat_histories.pkl"):
|
56 |
+
self.user_chat_histories: Dict[int, List[dict]] = self._load_chat_histories(chat_history_file)
|
57 |
+
self.chat_history_file = chat_history_file
|
58 |
+
|
59 |
+
# device
|
60 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
+
print(f"[MultiModal] device: {self.device}")
|
62 |
+
|
63 |
+
# placeholders for large models (lazy)
|
64 |
+
self._voice_processor = None
|
65 |
+
self._voice_emotion_model = None
|
66 |
+
|
67 |
+
self._translator = None
|
68 |
+
|
69 |
+
self._chat_tokenizer = None
|
70 |
+
self._chat_model = None
|
71 |
+
self._chat_model_name = "bigscience/bloom" # placeholder; will set proper below
|
72 |
+
|
73 |
+
self._image_captioner = None
|
74 |
+
|
75 |
+
self._sd_pipe = None
|
76 |
+
self._sd_inpaint = None
|
77 |
+
|
78 |
+
self._code_tokenizer = None
|
79 |
+
self._code_model = None
|
80 |
+
|
81 |
+
# other small helpers
|
82 |
+
self._sr_recognizer = sr.Recognizer()
|
83 |
+
|
84 |
+
# set common model names (you can change)
|
85 |
+
self.model_names = {
|
86 |
+
"voice_emotion_processor": "facebook/hubert-large-ls960-ft",
|
87 |
+
"voice_emotion_model": "superb/hubert-base-superb-er",
|
88 |
+
"translation_model": "facebook/nllb-200-distilled-600M",
|
89 |
+
"chatbot_tokenizer": "facebook/blenderbot-400M-distill",
|
90 |
+
"chatbot_model": "facebook/blenderbot-400M-distill",
|
91 |
+
"image_captioner": "Salesforce/blip-image-captioning-base",
|
92 |
+
"sd_inpaint": "runwayml/stable-diffusion-inpainting",
|
93 |
+
"sd_text2img": "runwayml/stable-diffusion-v1-5",
|
94 |
+
"code_model": "bigcode/starcoder", # Or use a specific StarCoder checkpoint on HF
|
95 |
+
}
|
96 |
+
|
97 |
+
# keep track of which heavy groups are loaded
|
98 |
+
self._loaded = {
|
99 |
+
"voice": False,
|
100 |
+
"translation": False,
|
101 |
+
"chat": False,
|
102 |
+
"image_caption": False,
|
103 |
+
"sd": False,
|
104 |
+
"code": False,
|
105 |
+
}
|
106 |
+
|
107 |
+
# ----------------------
|
108 |
+
# persistence
|
109 |
+
# ----------------------
|
110 |
+
def _load_chat_histories(self, fn: str) -> Dict[int, List[dict]]:
|
111 |
+
try:
|
112 |
+
with open(fn, "rb") as f:
|
113 |
+
return pickle.load(f)
|
114 |
+
except Exception:
|
115 |
+
return {}
|
116 |
+
|
117 |
+
def _save_chat_histories(self):
|
118 |
+
try:
|
119 |
+
with open(self.chat_history_file, "wb") as f:
|
120 |
+
pickle.dump(self.user_chat_histories, f)
|
121 |
+
except Exception as e:
|
122 |
+
print("[MultiModal] Warning: failed to save chat histories:", e)
|
123 |
+
|
124 |
+
# ----------------------
|
125 |
+
# Lazy loaders
|
126 |
+
# ----------------------
|
127 |
+
def _load_voice_models(self):
|
128 |
+
if self._loaded["voice"]:
|
129 |
+
return
|
130 |
+
print("[MultiModal] Loading voice/emotion models...")
|
131 |
+
self._voice_processor = Wav2Vec2Processor.from_pretrained(self.model_names["voice_emotion_processor"])
|
132 |
+
self._voice_emotion_model = Wav2Vec2ForSequenceClassification.from_pretrained(self.model_names["voice_emotion_model"]).to(self.device)
|
133 |
+
self._loaded["voice"] = True
|
134 |
+
print("[MultiModal] Voice models loaded.")
|
135 |
+
|
136 |
+
def _load_translation(self):
|
137 |
+
if self._loaded["translation"]:
|
138 |
+
return
|
139 |
+
print("[MultiModal] Loading translation pipeline...")
|
140 |
+
device_idx = 0 if self.device == "cuda" else -1
|
141 |
+
self._translator = pipeline("translation", model=self.model_names["translation_model"], device=device_idx)
|
142 |
+
self._loaded["translation"] = True
|
143 |
+
print("[MultiModal] Translation loaded.")
|
144 |
+
|
145 |
+
def _load_chatbot(self):
|
146 |
+
if self._loaded["chat"]:
|
147 |
+
return
|
148 |
+
print("[MultiModal] Loading chatbot model...")
|
149 |
+
# chatbot: keep current blenderbot to preserve behaviour
|
150 |
+
self._chat_tokenizer = AutoTokenizer.from_pretrained(self.model_names["chatbot_tokenizer"])
|
151 |
+
self._chat_model = AutoModelForSeq2SeqLM.from_pretrained(self.model_names["chatbot_model"]).to(self.device)
|
152 |
+
self._loaded["chat"] = True
|
153 |
+
print("[MultiModal] Chatbot loaded.")
|
154 |
+
|
155 |
+
def _load_image_captioner(self):
|
156 |
+
if self._loaded["image_caption"]:
|
157 |
+
return
|
158 |
+
print("[MultiModal] Loading image captioner...")
|
159 |
+
device_idx = 0 if self.device == "cuda" else -1
|
160 |
+
self._image_captioner = pipeline("image-to-text", model=self.model_names["image_captioner"], device=device_idx)
|
161 |
+
self._loaded["image_caption"] = True
|
162 |
+
print("[MultiModal] Image captioner loaded.")
|
163 |
+
|
164 |
+
def _load_sd(self):
|
165 |
+
if self._loaded["sd"]:
|
166 |
+
return
|
167 |
+
print("[MultiModal] Loading Stable Diffusion pipelines...")
|
168 |
+
# text2img
|
169 |
+
sd_model = self.model_names["sd_text2img"]
|
170 |
+
sd_inpaint_model = self.model_names["sd_inpaint"]
|
171 |
+
# Use float16 on GPU for speed
|
172 |
+
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
|
173 |
+
try:
|
174 |
+
self._sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model, torch_dtype=torch_dtype)
|
175 |
+
self._sd_pipe = self._sd_pipe.to(self.device)
|
176 |
+
except Exception as e:
|
177 |
+
print("[MultiModal] Warning loading text2img:", e)
|
178 |
+
self._sd_pipe = None
|
179 |
+
|
180 |
+
try:
|
181 |
+
self._sd_inpaint = StableDiffusionInpaintPipeline.from_pretrained(sd_inpaint_model, torch_dtype=torch_dtype)
|
182 |
+
self._sd_inpaint = self._sd_inpaint.to(self.device)
|
183 |
+
except Exception as e:
|
184 |
+
print("[MultiModal] Warning loading inpaint:", e)
|
185 |
+
self._sd_inpaint = None
|
186 |
+
|
187 |
+
self._loaded["sd"] = True
|
188 |
+
print("[MultiModal] Stable Diffusion loaded (where possible).")
|
189 |
+
|
190 |
+
def _load_code_model(self):
|
191 |
+
if self._loaded["code"]:
|
192 |
+
return
|
193 |
+
print("[MultiModal] Loading code model...")
|
194 |
+
# StarCoder style model (may require HF_TOKEN or large memory)
|
195 |
+
try:
|
196 |
+
self._code_tokenizer = HFTokenizer.from_pretrained(self.model_names["code_model"])
|
197 |
+
self._code_model = AutoModelForCausalLM.from_pretrained(self.model_names["code_model"]).to(self.device)
|
198 |
+
self._loaded["code"] = True
|
199 |
+
print("[MultiModal] Code model loaded.")
|
200 |
+
except Exception as e:
|
201 |
+
print("[MultiModal] Warning: could not load code model:", e)
|
202 |
+
self._code_tokenizer = None
|
203 |
+
self._code_model = None
|
204 |
+
|
205 |
+
# ----------------------
|
206 |
+
# Voice: analyze emotion, transcribe
|
207 |
+
# ----------------------
|
208 |
+
async def analyze_voice_emotion(self, audio_path: str) -> str:
|
209 |
+
self._load_voice_models()
|
210 |
+
speech, sr_ = librosa.load(audio_path, sr=16000)
|
211 |
+
inputs = self._voice_processor(speech, sampling_rate=sr_, return_tensors="pt", padding=True).to(self.device)
|
212 |
+
with torch.no_grad():
|
213 |
+
logits = self._voice_emotion_model(**inputs).logits
|
214 |
+
predicted_class = torch.argmax(logits).item()
|
215 |
+
return {
|
216 |
+
0: "😊 Happy",
|
217 |
+
1: "😢 Sad",
|
218 |
+
2: "😠 Angry",
|
219 |
+
3: "😨 Fearful",
|
220 |
+
4: "😌 Calm",
|
221 |
+
5: "😲 Surprised",
|
222 |
+
}.get(predicted_class, "🤔 Unknown")
|
223 |
+
|
224 |
+
async def process_voice_message(self, voice_file, user_id: int) -> dict:
|
225 |
+
"""
|
226 |
+
voice_file: Starlette UploadFile or object with get_file() used previously in your code.
|
227 |
+
Returns: {text, language, emotion}
|
228 |
+
"""
|
229 |
+
# Save OGG locally
|
230 |
+
ogg_path = _tmp_path(".ogg")
|
231 |
+
wav_path = _tmp_path(".wav")
|
232 |
+
tf = await voice_file.get_file()
|
233 |
+
await tf.download_to_drive(ogg_path)
|
234 |
+
|
235 |
+
# Convert to WAV via ffmpeg
|
236 |
+
try:
|
237 |
+
ffmpeg_path = ffmpeg.get_ffmpeg_exe()
|
238 |
+
subprocess.run([ffmpeg_path, "-y", "-i", ogg_path, wav_path], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
239 |
+
except Exception as e:
|
240 |
+
# fallback: try ffmpeg in PATH
|
241 |
+
try:
|
242 |
+
subprocess.run(["ffmpeg", "-y", "-i", ogg_path, wav_path], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
243 |
+
except Exception as ee:
|
244 |
+
raise RuntimeError(f"ffmpeg conversion failed: {e} / {ee}")
|
245 |
+
|
246 |
+
# Transcribe using SpeechRecognition Google STT (as before) -- or you can integrate whisper
|
247 |
+
recognizer = self._sr_recognizer
|
248 |
+
with sr.AudioFile(wav_path) as source:
|
249 |
+
audio = recognizer.record(source)
|
250 |
+
|
251 |
+
detected_lang = None
|
252 |
+
detected_text = ""
|
253 |
+
# tried languages set
|
254 |
+
lang_map = {
|
255 |
+
"zh": {"stt": "zh-CN"},
|
256 |
+
"ja": {"stt": "ja-JP"},
|
257 |
+
"ko": {"stt": "ko-KR"},
|
258 |
+
"en": {"stt": "en-US"},
|
259 |
+
"es": {"stt": "es-ES"},
|
260 |
+
"fr": {"stt": "fr-FR"},
|
261 |
+
"de": {"stt": "de-DE"},
|
262 |
+
"it": {"stt": "it-IT"},
|
263 |
+
}
|
264 |
+
for lang_code, lang_data in lang_map.items():
|
265 |
+
try:
|
266 |
+
detected_text = recognizer.recognize_google(audio, language=lang_data["stt"])
|
267 |
+
detected_lang = lang_code
|
268 |
+
break
|
269 |
+
except sr.UnknownValueError:
|
270 |
+
continue
|
271 |
+
except Exception:
|
272 |
+
continue
|
273 |
+
|
274 |
+
if not detected_lang:
|
275 |
+
# If not recognized, try fallback: detect from small chunk via langdetect
|
276 |
+
detected_lang = "en"
|
277 |
+
detected_text = ""
|
278 |
+
|
279 |
+
# emotion
|
280 |
+
emotion = await self.analyze_voice_emotion(wav_path)
|
281 |
+
|
282 |
+
# remove temp files
|
283 |
+
try:
|
284 |
+
os.remove(ogg_path)
|
285 |
+
os.remove(wav_path)
|
286 |
+
except Exception:
|
287 |
+
pass
|
288 |
+
|
289 |
+
return {"text": detected_text, "language": detected_lang, "emotion": emotion}
|
290 |
+
|
291 |
+
# ----------------------
|
292 |
+
# Text chat with translation & history
|
293 |
+
# ----------------------
|
294 |
+
async def generate_response(self, text: str, user_id: int, lang: str = "en") -> str:
|
295 |
+
# Ensure chat model loaded
|
296 |
+
self._load_chatbot()
|
297 |
+
self._load_translation()
|
298 |
+
|
299 |
+
if user_id not in self.user_chat_histories:
|
300 |
+
self.user_chat_histories[user_id] = []
|
301 |
+
|
302 |
+
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "user", "text": text, "language": lang})
|
303 |
+
self.user_chat_histories[user_id] = self.user_chat_histories[user_id][-100:]
|
304 |
+
self._save_chat_histories()
|
305 |
+
|
306 |
+
# Build context: translate last few msgs to English for consistency
|
307 |
+
context_texts = []
|
308 |
+
for msg in self.user_chat_histories[user_id][-5:]:
|
309 |
+
if msg.get("language", "en") != "en":
|
310 |
+
try:
|
311 |
+
translated = self._translator(msg["text"])[0]["translation_text"]
|
312 |
+
except Exception:
|
313 |
+
translated = msg["text"]
|
314 |
+
else:
|
315 |
+
translated = msg["text"]
|
316 |
+
context_texts.append(f"{msg['role']}: {translated}")
|
317 |
+
|
318 |
+
context = "\n".join(context_texts)
|
319 |
+
input_text = f"Context:\n{context}\nUser: {text if lang == 'en' else context_texts[-1].split(': ', 1)[1]}"
|
320 |
+
|
321 |
+
# Tokenize + generate
|
322 |
+
inputs = self._chat_tokenizer.encode(input_text, return_tensors="pt").to(self.device)
|
323 |
+
outputs = self._chat_model.generate(inputs, max_length=1000)
|
324 |
+
response_en = self._chat_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
325 |
+
|
326 |
+
# Translate back to user's language if needed
|
327 |
+
if lang != "en":
|
328 |
+
try:
|
329 |
+
response = self._translator(response_en)[0]["translation_text"]
|
330 |
+
except Exception:
|
331 |
+
response = response_en
|
332 |
+
else:
|
333 |
+
response = response_en
|
334 |
+
|
335 |
+
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "bot", "text": response, "language": lang})
|
336 |
+
self._save_chat_histories()
|
337 |
+
|
338 |
+
return response
|
339 |
+
|
340 |
+
# ----------------------
|
341 |
+
# Image captioning (existing)
|
342 |
+
# ----------------------
|
343 |
+
async def process_image_message(self, image_file, user_id: int) -> str:
|
344 |
+
# Save image
|
345 |
+
img_path = _tmp_path(".jpg")
|
346 |
+
tf = await image_file.get_file()
|
347 |
+
await tf.download_to_drive(img_path)
|
348 |
+
|
349 |
+
# load captioner
|
350 |
+
self._load_image_captioner()
|
351 |
+
try:
|
352 |
+
image = Image.open(img_path).convert("RGB")
|
353 |
+
description = self._image_captioner(image)[0]["generated_text"]
|
354 |
+
except Exception as e:
|
355 |
+
description = f"[Error generating caption: {e}]"
|
356 |
+
|
357 |
+
# cleanup
|
358 |
+
try:
|
359 |
+
os.remove(img_path)
|
360 |
+
except Exception:
|
361 |
+
pass
|
362 |
+
|
363 |
+
# store in history
|
364 |
+
if user_id not in self.user_chat_histories:
|
365 |
+
self.user_chat_histories[user_id] = []
|
366 |
+
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "user", "text": "[Image]", "language": "en"})
|
367 |
+
self.user_chat_histories[user_id].append({"timestamp": datetime.now().isoformat(), "role": "bot", "text": f"Image description: {description}", "language": "en"})
|
368 |
+
self._save_chat_histories()
|
369 |
+
|
370 |
+
return description
|
371 |
+
|
372 |
+
# ----------------------
|
373 |
+
# Voice reply (TTS)
|
374 |
+
# ----------------------
|
375 |
+
async def generate_voice_reply(self, text: str, user_id: int, fmt: str = "ogg") -> str:
|
376 |
+
"""
|
377 |
+
Generate TTS audio reply using gTTS (or swap out to another TTS if you have).
|
378 |
+
Returns path to audio file.
|
379 |
+
"""
|
380 |
+
mp3_path = _tmp_path(".mp3")
|
381 |
+
out_path = _tmp_path(f".{fmt}")
|
382 |
+
|
383 |
+
try:
|
384 |
+
tts = gTTS(text)
|
385 |
+
tts.save(mp3_path)
|
386 |
+
# convert to requested format using ffmpeg (ogg/opus for Telegram voice)
|
387 |
+
ffmpeg_path = ffmpeg.get_ffmpeg_exe()
|
388 |
+
if fmt == "ogg":
|
389 |
+
# convert mp3 -> ogg (opus)
|
390 |
+
subprocess.run([ffmpeg_path, "-y", "-i", mp3_path, "-c:a", "libopus", out_path], check=True)
|
391 |
+
elif fmt == "wav":
|
392 |
+
subprocess.run([ffmpeg_path, "-y", "-i", mp3_path, out_path], check=True)
|
393 |
+
else:
|
394 |
+
# default: return mp3
|
395 |
+
shutil.move(mp3_path, out_path)
|
396 |
+
except Exception as e:
|
397 |
+
# fallback: raise
|
398 |
+
raise RuntimeError(f"TTS failed: {e}")
|
399 |
+
finally:
|
400 |
+
try:
|
401 |
+
if os.path.exists(mp3_path) and os.path.exists(out_path) and mp3_path != out_path:
|
402 |
+
os.remove(mp3_path)
|
403 |
+
except Exception:
|
404 |
+
pass
|
405 |
+
|
406 |
+
return out_path
|
407 |
+
|
408 |
+
# ----------------------
|
409 |
+
# Image generation (text -> image)
|
410 |
+
# ----------------------
|
411 |
+
async def generate_image_from_text(self, prompt: str, user_id: int, width: int = 512, height: int = 512, steps: int = 30) -> str:
|
412 |
+
self._load_sd()
|
413 |
+
if self._sd_pipe is None:
|
414 |
+
raise RuntimeError("Stable Diffusion pipeline not available.")
|
415 |
+
|
416 |
+
out_path = _tmp_path(".png")
|
417 |
+
try:
|
418 |
+
# diffusion pipeline uses CPU/GPU internally
|
419 |
+
result = self._sd_pipe(prompt, num_inference_steps=steps, height=height, width=width)
|
420 |
+
image = result.images[0]
|
421 |
+
image.save(out_path)
|
422 |
+
except Exception as e:
|
423 |
+
raise RuntimeError(f"Image generation failed: {e}")
|
424 |
+
|
425 |
+
return out_path
|
426 |
+
|
427 |
+
# ----------------------
|
428 |
+
# Image editing (inpainting)
|
429 |
+
# ----------------------
|
430 |
+
async def edit_image_inpaint(self, image_file, mask_file=None, prompt: str = "", user_id: int = 0) -> str:
|
431 |
+
self._load_sd()
|
432 |
+
if self._sd_inpaint is None:
|
433 |
+
raise RuntimeError("Inpainting pipeline not available.")
|
434 |
+
|
435 |
+
# Save files
|
436 |
+
img_path = _tmp_path(".png")
|
437 |
+
tf = await image_file.get_file()
|
438 |
+
await tf.download_to_drive(img_path)
|
439 |
+
|
440 |
+
if mask_file:
|
441 |
+
mask_path = _tmp_path(".png")
|
442 |
+
m_tf = await mask_file.get_file()
|
443 |
+
await m_tf.download_to_drive(mask_path)
|
444 |
+
mask_image = Image.open(mask_path).convert("L")
|
445 |
+
else:
|
446 |
+
# default mask (edit entire image)
|
447 |
+
mask_image = Image.new("L", Image.open(img_path).size, color=255)
|
448 |
+
mask_path = None
|
449 |
+
|
450 |
+
init_image = Image.open(img_path).convert("RGB")
|
451 |
+
# run inpaint
|
452 |
+
out_path = _tmp_path(".png")
|
453 |
+
try:
|
454 |
+
result = self._sd_inpaint(prompt=prompt if prompt else " ", image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=30)
|
455 |
+
edited = result.images[0]
|
456 |
+
edited.save(out_path)
|
457 |
+
except Exception as e:
|
458 |
+
raise RuntimeError(f"Inpainting failed: {e}")
|
459 |
+
finally:
|
460 |
+
try:
|
461 |
+
os.remove(img_path)
|
462 |
+
if mask_path:
|
463 |
+
os.remove(mask_path)
|
464 |
+
except Exception:
|
465 |
+
pass
|
466 |
+
|
467 |
+
return out_path
|
468 |
+
|
469 |
+
# ----------------------
|
470 |
+
# Video processing: extract audio, frames, summarize
|
471 |
+
# ----------------------
|
472 |
+
async def process_video(self, video_file, user_id: int, max_frames: int = 4) -> dict:
|
473 |
+
"""
|
474 |
+
Accepts uploaded video file, extracts audio (for transcription) and sample frames,
|
475 |
+
returns summary: {duration, fps, transcriptions, captions}
|
476 |
+
"""
|
477 |
+
vid_path = _tmp_path(".mp4")
|
478 |
+
tf = await video_file.get_file()
|
479 |
+
await tf.download_to_drive(vid_path)
|
480 |
+
|
481 |
+
# Extract audio
|
482 |
+
audio_path = _tmp_path(".wav")
|
483 |
+
try:
|
484 |
+
clip = mp.VideoFileClip(vid_path)
|
485 |
+
clip.audio.write_audiofile(audio_path, logger=None)
|
486 |
+
duration = clip.duration
|
487 |
+
fps = clip.fps
|
488 |
+
except Exception as e:
|
489 |
+
raise RuntimeError(f"Video processing failed: {e}")
|
490 |
+
|
491 |
+
# Transcribe audio using the same process_voice_message flow: use SpeechRecognition or integrate Whisper
|
492 |
+
# For now we'll try SpeechRecognition on the audio
|
493 |
+
recognizer = sr.Recognizer()
|
494 |
+
with sr.AudioFile(audio_path) as source:
|
495 |
+
audio = recognizer.record(source)
|
496 |
+
transcribed = ""
|
497 |
+
try:
|
498 |
+
transcribed = recognizer.recognize_google(audio)
|
499 |
+
except Exception:
|
500 |
+
transcribed = ""
|
501 |
+
|
502 |
+
# Extract a few frames evenly
|
503 |
+
frames = []
|
504 |
+
try:
|
505 |
+
clip_reader = imageio.get_reader(vid_path, "ffmpeg")
|
506 |
+
total_frames = clip_reader.count_frames()
|
507 |
+
step = max(1, total_frames // max_frames)
|
508 |
+
for i in range(0, total_frames, step):
|
509 |
+
try:
|
510 |
+
frame = clip_reader.get_data(i)
|
511 |
+
pil = Image.fromarray(frame)
|
512 |
+
ppath = _tmp_path(".jpg")
|
513 |
+
pil.save(ppath)
|
514 |
+
frames.append(ppath)
|
515 |
+
if len(frames) >= max_frames:
|
516 |
+
break
|
517 |
+
except Exception:
|
518 |
+
continue
|
519 |
+
clip_reader.close()
|
520 |
+
except Exception:
|
521 |
+
pass
|
522 |
+
|
523 |
+
# Use image captioner on the frames
|
524 |
+
captions = []
|
525 |
+
if frames:
|
526 |
+
self._load_image_captioner()
|
527 |
+
for p in frames:
|
528 |
+
try:
|
529 |
+
img = Image.open(p).convert("RGB")
|
530 |
+
c = self._image_captioner(img)[0]["generated_text"]
|
531 |
+
captions.append(c)
|
532 |
+
except Exception:
|
533 |
+
captions.append("")
|
534 |
+
finally:
|
535 |
+
try:
|
536 |
+
os.remove(p)
|
537 |
+
except Exception:
|
538 |
+
pass
|
539 |
+
|
540 |
+
# cleanup
|
541 |
+
try:
|
542 |
+
os.remove(vid_path)
|
543 |
+
os.remove(audio_path)
|
544 |
+
except Exception:
|
545 |
+
pass
|
546 |
+
|
547 |
+
return {"duration": duration, "fps": fps, "transcription": transcribed, "captions": captions}
|
548 |
+
|
549 |
+
# ----------------------
|
550 |
+
# File processing (PDF, DOCX, TXT, CSV)
|
551 |
+
# ----------------------
|
552 |
+
async def process_file(self, file_obj, user_id: int) -> dict:
|
553 |
+
"""
|
554 |
+
Reads a file, extracts text (supports PDF/TXT/CSV/DOCX if python-docx added),
|
555 |
+
and returns a short summary.
|
556 |
+
"""
|
557 |
+
# Save file
|
558 |
+
fpath = _tmp_path()
|
559 |
+
tf = await file_obj.get_file()
|
560 |
+
await tf.download_to_drive(fpath)
|
561 |
+
lower = fpath.lower()
|
562 |
+
|
563 |
+
text = ""
|
564 |
+
if fpath.endswith(".pdf"):
|
565 |
+
try:
|
566 |
+
doc = fitz.open(fpath)
|
567 |
+
for page in doc:
|
568 |
+
text += page.get_text()
|
569 |
+
except Exception as e:
|
570 |
+
text = f"[PDF read error: {e}]"
|
571 |
+
elif fpath.endswith((".txt", ".csv")):
|
572 |
+
try:
|
573 |
+
with open(fpath, "r", encoding="utf-8", errors="ignore") as fh:
|
574 |
+
text = fh.read()
|
575 |
+
except Exception as e:
|
576 |
+
text = f"[File read error: {e}]"
|
577 |
+
elif fpath.endswith(".docx"):
|
578 |
+
try:
|
579 |
+
import docx
|
580 |
+
doc = docx.Document(fpath)
|
581 |
+
text = "\n".join([p.text for p in doc.paragraphs])
|
582 |
+
except Exception as e:
|
583 |
+
text = f"[DOCX read error: {e}]"
|
584 |
+
else:
|
585 |
+
text = "[Unsupported file type]"
|
586 |
+
|
587 |
+
# Summarize: simple heuristic or use translator/chat model to summarize (but that costs compute)
|
588 |
+
summary = text[:300] + ("..." if len(text) > 300 else "")
|
589 |
+
try:
|
590 |
+
os.remove(fpath)
|
591 |
+
except Exception:
|
592 |
+
pass
|
593 |
+
|
594 |
+
return {"summary": summary, "full_text_length": len(text)}
|
595 |
+
|
596 |
+
# ----------------------
|
597 |
+
# Code assistance: generate / explain code
|
598 |
+
# ----------------------
|
599 |
+
async def code_complete(self, prompt: str, max_tokens: int = 512, temperature: float = 0.2) -> str:
|
600 |
+
"""
|
601 |
+
Uses a code LLM (StarCoder or similar) to complete or generate code.
|
602 |
+
"""
|
603 |
+
self._load_code_model()
|
604 |
+
if not self._code_model or not self._code_tokenizer:
|
605 |
+
raise RuntimeError("Code model not available.")
|
606 |
+
|
607 |
+
input_ids = self._code_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
608 |
+
gen = self._code_model.generate(input_ids, max_new_tokens=max_tokens, do_sample=False)
|
609 |
+
out = self._code_tokenizer.decode(gen[0], skip_special_tokens=True)
|
610 |
+
return out
|
611 |
+
|
612 |
+
# ----------------------
|
613 |
+
# Optional: execute Python code in sandbox (WARNING: security risk)
|
614 |
+
# ----------------------
|
615 |
+
async def execute_python_code(self, code: str, timeout: int = 5) -> dict:
|
616 |
+
"""
|
617 |
+
Execute Python code in a very limited sandbox subprocess.
|
618 |
+
WARNING: Running arbitrary code is dangerous. Use only with trusted inputs or stronger sandboxing (containers).
|
619 |
+
"""
|
620 |
+
# Create temp dir
|
621 |
+
d = tempfile.mkdtemp()
|
622 |
+
file_path = os.path.join(d, "main.py")
|
623 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
624 |
+
f.write(code)
|
625 |
+
|
626 |
+
# run with timeout
|
627 |
+
try:
|
628 |
+
proc = await asyncio.create_subprocess_exec(
|
629 |
+
"python3", file_path,
|
630 |
+
stdout=asyncio.subprocess.PIPE,
|
631 |
+
stderr=asyncio.subprocess.PIPE,
|
632 |
+
)
|
633 |
+
try:
|
634 |
+
stdout, stderr = await asyncio.wait_for(proc.communicate(), timeout=timeout)
|
635 |
+
except asyncio.TimeoutError:
|
636 |
+
proc.kill()
|
637 |
+
return {"error": "Execution timed out"}
|
638 |
+
return {"stdout": stdout.decode("utf-8", errors="ignore"), "stderr": stderr.decode("utf-8", errors="ignore")}
|
639 |
+
finally:
|
640 |
+
try:
|
641 |
+
shutil.rmtree(d)
|
642 |
+
except Exception:
|
643 |
+
pass
|
644 |
+
|