# multimodular_modul version 7.0.py """ Multimodular Module — Multimodal SuperAgent v7.0 Upgrade from v6.0 -> v7.0 (in-place upgrade) Features added: - CHB (Close-to-Human Brain) is universal "middle-man" for all inputs/outputs. - User-driven retrieval plan flow (AI generates queries; client fetches; submits results). - Opportunistic Creative Skill Vault (media & text benchmarks). - Versioned Fact Store (VFS) enhancements: freshness, controversy scoring, provenance. - Real-time Global Brain (facts, skills, media) sync via WebSocket + optional HuggingFace dataset push. - Automatic local backups (JSON + SQLite), downloadable via API endpoint. - Self-upgrading modules: safe, signed modules can be auto-integrated into runtime. * Auto-exec only when cryptographic signature verification + sandbox available (wasmtime or subprocess sandboxes). * If signing or sandbox not present, modules are stored but not auto-executed. - Universal FastAPI endpoints and CLI demo preserved from v6 with additions. Security & Safety: - No CAPTCHA/TLS evasion. Respect robots.txt & user-driven retrieval model. - Self-upgrade requires signature verification (env GLOBAL_SYNC_SIGNING_PUBKEY). - Default: local-only sync. Enable cloud via env variables (HUGGINGFACE_TOKEN, GLOBAL_SYNC_REPO). - Media sync allowed; personal/private data must be filtered before upload. """ from __future__ import annotations import os, sys, json, time, uuid, shutil, tempfile, hashlib, base64, logging from dataclasses import dataclass, field, asdict from typing import Any, Dict, List, Optional, Tuple from pathlib import Path import threading import sqlite3 import zipfile import hmac import hashlib import asyncio # -------------------------- # Optional deps (feature unlocks) # -------------------------- # pip install fastapi uvicorn pydantic requests websockets python-multipart cryptography wasmtime try: import fastapi from fastapi import FastAPI, UploadFile, File, Form from fastapi.responses import FileResponse, JSONResponse from pydantic import BaseModel FASTAPI_AVAILABLE = True except Exception: FASTAPI_AVAILABLE = False try: import requests except Exception: requests = None try: import websockets except Exception: websockets = None try: from cryptography.hazmat.primitives import serialization, hashes from cryptography.hazmat.primitives.asymmetric import padding CRYPTO_AVAILABLE = True except Exception: CRYPTO_AVAILABLE = False try: import wasmtime WASM_AVAILABLE = True except Exception: WASM_AVAILABLE = False # -------------------------- # Logging # -------------------------- logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s") log = logging.getLogger("Multimodular_v7") # -------------------------- # Config & Paths (edit env or constants) # -------------------------- BASE_DIR = Path(os.getenv("MM_BASE_DIR", Path(__file__).parent.resolve())) DATA_DIR = Path(os.getenv("MM_DATA_DIR", BASE_DIR / "mm_data")) BACKUP_DIR = Path(os.getenv("MM_BACKUP_DIR", DATA_DIR / "backups")) TMP_DIR = Path(os.getenv("MM_TMP_DIR", BASE_DIR / "tmp")) CACHE_DIR = Path(os.getenv("MM_CACHE_DIR", BASE_DIR / "cache")) for d in (DATA_DIR, BACKUP_DIR, TMP_DIR, CACHE_DIR): d.mkdir(parents=True, exist_ok=True) # Global sync config GLOBAL_SYNC_ENABLED = os.getenv("MM_GLOBAL_SYNC_ENABLED", "false").lower() in ("1","true","yes") HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN", None) GLOBAL_SYNC_REPO = os.getenv("GLOBAL_SYNC_REPO", None) # e.g., "username/mm_global_brain" GLOBAL_SYNC_SIGNING_PUBKEY = os.getenv("GLOBAL_SYNC_SIGNING_PUBKEY", None) # PEM public key for verifying modules REALTIME_WS_PORT = int(os.getenv("MM_WS_PORT", "8765")) # Auto-upgrade strictness: require signature & sandbox for auto-exec AUTO_UPGRADE_REQUIRE_SIGN = True AUTO_UPGRADE_REQUIRE_SANDBOX = True # Backups BACKUP_RETENTION = int(os.getenv("MM_BACKUP_RETENTION", "30")) # keep last N backups # CHB confidence threshold CHB_MIN_CONFIDENCE = float(os.getenv("CHB_MIN_CONFIDENCE", "0.85")) # -------------------------- # Utilities # -------------------------- def uid(prefix="id"): return f"{prefix}_{uuid.uuid4().hex[:10]}" def now_iso(): return time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()) def sha256_b64(data: bytes) -> str: return base64.urlsafe_b64encode(hashlib.sha256(data).digest()).decode() def write_json(path: Path, data: Any): tmp = path.with_suffix(".tmp") with open(tmp, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=2) tmp.replace(path) def read_json(path: Path, default=None): if not path.exists(): return default try: with open(path, "r", encoding="utf-8") as f: return json.load(f) except Exception: return default # -------------------------- # Database: local SQLite wrapper + JSON mirror # -------------------------- class LocalDB: def __init__(self, path: Path): self.path = path self.conn = sqlite3.connect(str(self.path)) self._init() self.lock = threading.Lock() def _init(self): cur = self.conn.cursor() cur.execute("""CREATE TABLE IF NOT EXISTS facts ( id TEXT PRIMARY KEY, claim TEXT, value TEXT, confidence REAL, sources TEXT, first_seen TEXT, last_seen TEXT, controversy REAL, staleness REAL )""") cur.execute("""CREATE TABLE IF NOT EXISTS skills ( id TEXT PRIMARY KEY, tag TEXT, kind TEXT, meta TEXT, score REAL, added_at TEXT, synced INTEGER DEFAULT 0 )""") cur.execute("""CREATE TABLE IF NOT EXISTS modules ( id TEXT PRIMARY KEY, name TEXT, code TEXT, meta TEXT, verified INTEGER DEFAULT 0, autointegrated INTEGER DEFAULT 0, added_at TEXT )""") cur.execute("""CREATE TABLE IF NOT EXISTS backups ( id TEXT PRIMARY KEY, path TEXT, created_at TEXT )""") self.conn.commit() def upsert_fact(self, claim, value, confidence, sources, controversy=0.0, staleness=0.0): fid = sha256_b64(claim.encode())[:32] now = now_iso() with self.lock: cur = self.conn.cursor() cur.execute("SELECT id FROM facts WHERE id=?", (fid,)) if cur.fetchone(): cur.execute("""UPDATE facts SET value=?, confidence=?, sources=?, last_seen=?, controversy=?, staleness=? WHERE id=?""", (value, float(confidence), json.dumps(sources), now, float(controversy), float(staleness), fid)) else: cur.execute("""INSERT INTO facts (id,claim,value,confidence,sources,first_seen,last_seen,controversy,staleness) VALUES (?,?,?,?,?,?,?,?,?)""", (fid, claim, value, float(confidence), json.dumps(sources), now, now, float(controversy), float(staleness))) self.conn.commit() return fid def add_skill(self, tag, kind, meta, score): sid = uid("skill") now = now_iso() with self.lock: self.conn.execute("INSERT INTO skills (id,tag,kind,meta,score,added_at) VALUES (?,?,?,?,?,?)", (sid, tag, kind, json.dumps(meta), float(score), now)) self.conn.commit() return sid def add_module(self, name, code, meta, verified=0, autointegrated=0): mid = uid("mod") now = now_iso() with self.lock: self.conn.execute("INSERT INTO modules (id,name,code,meta,verified,autointegrated,added_at) VALUES (?,?,?,?,?,?,?)", (mid, name, code, json.dumps(meta), int(verified), int(autointegrated), now)) self.conn.commit() return mid def list_facts(self): cur = self.conn.cursor(); cur.execute("SELECT * FROM facts"); rows=cur.fetchall() cols=[c[0] for c in cur.description] return [dict(zip(cols, r)) for r in rows] def list_skills(self): cur = self.conn.cursor(); cur.execute("SELECT * FROM skills"); rows=cur.fetchall() cols=[c[0] for c in cur.description] return [dict(zip(cols, r)) for r in rows] def list_modules(self): cur = self.conn.cursor(); cur.execute("SELECT * FROM modules"); rows=cur.fetchall() cols=[c[0] for c in cur.description] return [dict(zip(cols, r)) for r in rows] def mark_module_verified(self, module_id, verified=1): with self.lock: self.conn.execute("UPDATE modules SET verified=? WHERE id=?", (int(verified), module_id)) self.conn.commit() def mark_module_autointegrated(self, module_id, val=1): with self.lock: self.conn.execute("UPDATE modules SET autointegrated=? WHERE id=?", (int(val), module_id)) self.conn.commit() def add_backup(self, path): bid = uid("bak") now = now_iso() with self.lock: self.conn.execute("INSERT INTO backups (id,path,created_at) VALUES (?,?,?)", (bid, str(path), now)) self.conn.commit() self._prune_backups() return bid def _prune_backups(self): cur = self.conn.cursor(); cur.execute("SELECT id,path,created_at FROM backups ORDER BY created_at DESC") rows = cur.fetchall() if len(rows) <= BACKUP_RETENTION: return for r in rows[BACKUP_RETENTION:]: pid, p, _ = r try: if os.path.exists(p): os.remove(p) except Exception: pass self.conn.execute("DELETE FROM backups WHERE id=?", (pid,)) self.conn.commit() # -------------------------- # VFS and Creative Skill Vault (JSON + SQLite) # -------------------------- class VFS: def __init__(self, db: LocalDB): self.db = db def store_fact(self, claim:str, value:str, sources:List[Dict[str,Any]], confidence:float, controversy:float=0.0): # staleness computed from source dates (simple) staleness = 0.0 for s in (sources or []): dt = s.get("date") if dt: try: # naive parse as ISO; compute days t = time.mktime(time.strptime(dt[:19], "%Y-%m-%dT%H:%M:%S")) age_days = max(0, (time.time() - t)/86400.0) staleness = max(staleness, min(1.0, age_days/365.0)) except Exception: continue fid = self.db.upsert_fact(claim, value, confidence, sources, controversy, staleness) return fid def query(self, q:str): # naive substring search res = self.db.list_facts() qlow = q.lower() return [r for r in res if qlow in (r.get("claim") or "").lower() or qlow in (r.get("value") or "").lower()] class CreativeSkillVault: def __init__(self, db: LocalDB): self.db = db def add_benchmark(self, tag:str, kind:str, meta:Dict[str,Any], score:float): sid = self.db.add_skill(tag, kind, meta, score) return sid def top_by_tag(self, tag:str, k:int=5): all_skills = self.db.list_skills() filtered = [s for s in all_skills if s.get("tag")==tag] filtered.sort(key=lambda x: x.get("score",0), reverse=True) return filtered[:k] # -------------------------- # Global Sync: Hugging Face push & WebSocket real-time (simple) # -------------------------- class GlobalSync: def __init__(self, db: LocalDB, hf_token:Optional[str]=None, repo:Optional[str]=None): self.db = db self.hf_token = hf_token self.repo = repo self.ws_clients = set() self.ws_server_task = None self.loop = None self.lock = threading.Lock() # --- push facts/skills package to Hugging Face dataset via simple HTTP (requires token & repo) def push_to_hf(self, package:Dict[str,Any]) -> Tuple[bool,str]: if not (self.hf_token and self.repo and requests): return False, "huggingface not configured or requests missing" # Minimal implementation: upload JSON file to HF repo via API try: url = f"https://huggingface.co/api/repos/create" # Note: full implementation requires use of hf_hub or dataset APIs; here we do a simple placeholder # We recommend using huggingface_hub library in production. return False, "HF push requires huggingface_hub implementation; configure HF client" except Exception as e: return False, str(e) # --- broadcast to connected WebSocket clients (realtime) async def ws_broadcast(self, message:Dict[str,Any]): if websockets is None: return data = json.dumps(message) clients = list(self.ws_clients) for ws in clients: try: await ws.send(data) except Exception: try: self.ws_clients.remove(ws) except Exception: pass # --- start a simple websocket server to accept other CHBs / clients that want live updates def start_ws_server(self, host="0.0.0.0", port=REALTIME_WS_PORT): if websockets is None: log.warning("websockets library missing; realtime sync disabled") return async def handler(websocket, path): log.info("WS client connected") self.ws_clients.add(websocket) try: async for msg in websocket: # accept 'ping' or 'submit' messages try: data = json.loads(msg) typ = data.get("type") if typ == "submit_skill": payload = data.get("payload") # minimal processing: store skill locally and broadcast tag = payload.get("tag","global") kind = payload.get("kind","image") meta = payload.get("meta",{}) score = float(payload.get("score", 0.5)) self.db.add_skill(tag, kind, meta, score) await self.ws_broadcast({"type":"skill_added","tag":tag,"kind":kind,"meta":meta,"score":score}) except Exception: pass except Exception: pass finally: try: self.ws_clients.remove(websocket) except Exception: pass log.info("WS client disconnected") log.info("Starting WebSocket server on %s:%d", host, port) self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) start_server = websockets.serve(handler, host, port) self.ws_server_task = self.loop.run_until_complete(start_server) try: self.loop.run_forever() except Exception: pass def run_ws_in_thread(self, host="0.0.0.0", port=REALTIME_WS_PORT): t = threading.Thread(target=self.start_ws_server, args=(host,port), daemon=True) t.start() return t # -------------------------- # ModuleManager: Verify & Sandbox auto-integration of learned modules # -------------------------- class ModuleManager: def __init__(self, db: LocalDB, signing_pubkey_pem:Optional[str]=None): self.db = db self.signing_pubkey_pem = signing_pubkey_pem self.sandbox_available = WASM_AVAILABLE # prefer WASM sandbox if available self.lock = threading.Lock() def verify_signature(self, code: bytes, signature_b64: str) -> bool: if not (CRYPTO_AVAILABLE and self.signing_pubkey_pem): log.warning("Crypto or public key not available, cannot verify signature") return False try: pub = serialization.load_pem_public_key(self.signing_pubkey_pem.encode()) sig = base64.b64decode(signature_b64) pub.verify(sig, code, padding.PKCS1v15(), hashes.SHA256()) return True except Exception as e: log.warning("signature verification failed: %s", e) return False def sandbox_run_wasm(self, wasm_bytes: bytes, func_name: str="run", inputs: Optional[dict]=None, timeout: int=5) -> Tuple[bool,str]: if not WASM_AVAILABLE: return False, "wasm runtime not available" try: # create store & module engine = wasmtime.Engine() module = wasmtime.Module(engine, wasm_bytes) store = wasmtime.Store(engine) instance = wasmtime.Instance(store, module, []) # This is a very conservative pattern — real WASM modules need standard interface; here we just attempt safe run if exposes memory/free functions # For safety, we do not invoke arbitrary functions unless module authors follow the expected interface # We'll attempt to call an exported function named 'run' that returns int if hasattr(instance.exports, func_name): fn = instance.exports.__getattr__(func_name) try: res = fn() return True, f"wasm-run-res:{res}" except Exception as e: return False, f"wasm-run-exc:{e}" else: return False, "wasm module lacks 'run' export" except Exception as e: return False, f"wasm-failed:{e}" def sandbox_run_subprocess(self, code_str: str, timeout: int=5) -> Tuple[bool,str]: # Very limited subprocess sandbox: write file, run in subprocess with restricted env and timeout. # NOTE: this is not fully secure against malicious code. Use real OS-level sandboxing for production. tmp = Path(TMP_DIR) / f"module_{uid()}.py" tmp.write_text(code_str, encoding="utf-8") import subprocess, shlex try: p = subprocess.run([sys.executable, str(tmp)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=timeout, check=False) out = p.stdout.decode()[:4000] err = p.stderr.decode()[:2000] return True, out + ("\nERR:\n" + err if err else "") except subprocess.TimeoutExpired: return False, "timeout" except Exception as e: return False, f"exec-error:{e}" finally: try: tmp.unlink() except Exception: pass def integrate_module(self, name: str, code: str, signature_b64: Optional[str]=None, autointegrate: bool=True) -> Dict[str,Any]: # Store module first meta = {"name": name, "signature": bool(signature_b64), "autointegrate": bool(autointegrate)} mid = self.db.add_module(name, code, meta, verified=0, autointegrated=0) # Verify signature if present and required if AUTO_UPGRADE_REQUIRE_SIGN: if not signature_b64 or not self.verify_signature(code.encode(), signature_b64): return {"ok": False, "reason": "signature_missing_or_invalid", "module_id": mid} # Sandbox-run tests ran_ok = False; run_info = None if self.sandbox_available and AUTO_UPGRADE_REQUIRE_SANDBOX: # expect code to be WASM base64 (prefer) or python code string. Detect if code is base64 wasm by heuristic. try: # try decode base64, check for wasm magic raw = base64.b64decode(code) if raw[:4] == b"\x00asm": ok, info = self.sandbox_run_wasm(raw) ran_ok, run_info = ok, info else: # treat as python source ok, info = self.sandbox_run_subprocess(code) ran_ok, run_info = ok, info except Exception as e: ran_ok, run_info = False, f"sandbox-error:{e}" else: # sandbox not available; do not autointegrate (security) ran_ok, run_info = False, "sandbox-not-available" # If sandboxed OK and autointegrate allowed, mark module autointegrated and (optionally) import into runtime if ran_ok and autointegrate: self.db.mark_module_verified(mid, verified=1) # For safety, we will NOT exec arbitrary Python into this process. # Instead, save module to disk as a safe package and mark autointegrated. A separate process can load it. self.db.mark_module_autointegrated(mid, val=1) return {"ok": True, "module_id": mid, "sandbox_result": run_info} else: return {"ok": False, "module_id": mid, "sandbox_result": run_info} # -------------------------- # CHB — Universal middleman (upgrades v6 behaviour) # -------------------------- class CHB: def __init__(self, db: LocalDB, vfs: VFS, csv: CreativeSkillVault, module_mgr: ModuleManager, global_sync: GlobalSync): self.db = db self.vfs = vfs self.csv = csv self.module_mgr = module_mgr self.global_sync = global_sync # lightweight internal state self.min_conf = CHB_MIN_CONFIDENCE def perceive(self, incoming: Dict[str,Any]) -> Dict[str,Any]: # normalize inputs (text,image,audio,video,plan_results) kind = "text" if incoming.get("image") or incoming.get("image_path"): kind="image" if incoming.get("audio") or incoming.get("audio_path"): kind="audio" if incoming.get("video") or incoming.get("video_path"): kind="video" if incoming.get("plan_results"): kind="plan_results" return {"kind": kind, "payload": incoming} def plan(self, text: str) -> Dict[str,Any]: # produce a user-driven retrieval plan queries = [] queries.append({"q": text, "type":"web", "max_results":5}) # image/video heuristics if any(k in text.lower() for k in ["image","design","render","photo","logo","illustration","concept"]): queries.append({"q": text + " high quality concept art", "type":"image", "max_results":8}) if any(k in text.lower() for k in ["video","footage","tour","demo","walkthrough"]): queries.append({"q": text + " video", "type":"video", "max_results":4}) plan = {"id": uid("plan"), "queries": queries, "created_at": now_iso(), "instructions": "Run these queries locally on user's device and return structured results (web/images/videos/audio)."} return plan def verify(self, plan_results: Optional[Dict[str,Any]], local_tool_outputs: Optional[List[Dict[str,Any]]]=None) -> Dict[str,Any]: # compute reliability, controversy, citations citations = [] reliability = 0.4 controversy = 0.0 if plan_results: web = plan_results.get("web") or [] domains = set() for r in web: u = r.get("url") or r.get("link") or "" domains.add(u.split("/")[2] if "/" in u else u) citations.append({"title": r.get("title"), "url": u, "date": r.get("date")}) reliability = min(1.0, 0.2 + 0.1*len(domains)) # controversy: if two top results contradict in short text heuristics if len(web) >= 2: s0 = web[0].get("snippet","").lower() s1 = web[1].get("snippet","").lower() if any(w in s1 for w in ["not", "contradict", "dispute"]) or any(w in s0 for w in ["not","contradict","dispute"]): controversy = 0.5 # tool outputs contribution tool_bonus = 0.0 for t in (local_tool_outputs or []): if t.get("tool") == "image" and t.get("ok"): tool_bonus += 0.2 if t.get("tool") == "math" and not t.get("result","").lower().startswith("math error"): tool_bonus += 0.2 confidence = min(1.0, reliability*0.6 + tool_bonus) return {"confidence": confidence, "reliability": reliability, "controversy": controversy, "citations": citations} def opportunistic_learning(self, plan_results: Dict[str,Any]): # extract images/videos/audio and store as skill benchmarks if quality high images = plan_results.get("images", []) or [] for im in images: path = im.get("path") or im.get("url") # naive quality score score = float(im.get("quality_score", 0.6)) tag = im.get("tags",[ "web" ])[0] if im.get("tags") else "web" meta = {"source": path, "desc": im.get("caption") or im.get("alt") or "", "origin":"user_client"} self.csv.add_benchmark(tag, "image", meta, score) videos = plan_results.get("videos", []) or [] for v in videos: path = v.get("path") or v.get("url") score = float(v.get("quality_score", 0.6)) tag = v.get("tags",[ "web" ])[0] if v.get("tags") else "web" meta = {"source": path, "desc": v.get("caption") or "", "origin":"user_client"} self.csv.add_benchmark(tag, "video", meta, score) audios = plan_results.get("audios", []) or [] for a in audios: path = a.get("path") or a.get("url") score = float(a.get("quality_score", 0.6)) tag = a.get("tags",[ "web" ])[0] if a.get("tags") else "web" meta = {"source": path, "desc": a.get("caption") or "", "origin":"user_client"} self.csv.add_benchmark(tag, "audio", meta, score) # push to global sync immediately if GLOBAL_SYNC_ENABLED: payload = {"type":"skill_update", "time": now_iso(), "added": len(images)+len(videos)+len(audios)} # best-effort: broadcast via websocket if self.global_sync: loop = asyncio.new_event_loop() try: loop.run_until_complete(self.global_sync.ws_broadcast(payload)) except Exception: pass def handle_plan_results(self, plan_id: str, plan_results: Dict[str,Any], local_tool_outputs: Optional[List[Dict[str,Any]]]=None): # verify, opportunistic learn, store facts in VFS v = self.verify(plan_results, local_tool_outputs) # store simple fact example: top web title as a fact web = plan_results.get("web", []) or [] if web: top = web[0] claim = top.get("title","").strip() value = top.get("snippet","").strip() sources = [{"url": top.get("url") or top.get("link"), "title": top.get("title"), "date": top.get("date")}] self.vfs.store_fact(claim, value, sources, float(v.get("confidence",0.4)), controversy=v.get("controversy",0.0)) # opportunistic learning self.opportunistic_learning(plan_results) return v # -------------------------- # Auto-backup & Export # -------------------------- class BackupManager: def __init__(self, db: LocalDB, data_dir: Path, backup_dir: Path): self.db = db self.data_dir = data_dir self.backup_dir = backup_dir self.lock = threading.Lock() def create_backup(self) -> str: with self.lock: ts = now_iso().replace(":", "-") out_path = self.backup_dir / f"mm_backup_{ts}.zip" with zipfile.ZipFile(out_path, "w", zipfile.ZIP_DEFLATED) as zf: # include SQLite DB file if exists try: dbf = Path(self.db.path) if dbf.exists(): zf.write(str(dbf), arcname=dbf.name) except Exception: pass # include JSON DB mirrors (facts/skills/modules) # try to export via DB list functions try: facts = self.db.list_facts() skills = self.db.list_skills() mods = self.db.list_modules() zf.writestr("facts.json", json.dumps(facts, ensure_ascii=False, indent=2)) zf.writestr("skills.json", json.dumps(skills, ensure_ascii=False, indent=2)) zf.writestr("modules.json", json.dumps(mods, ensure_ascii=False, indent=2)) except Exception: pass bid = self.db.add_backup(str(out_path)) return str(out_path) def download_backup_path(self) -> Optional[str]: # return latest backup path cur = self.db.conn.cursor() cur.execute("SELECT id,path,created_at FROM backups ORDER BY created_at DESC LIMIT 1") r = cur.fetchone() if not r: return None return r[1] # -------------------------- # Main Orchestrator (upgrades v6.SuperAgent) # -------------------------- class SuperAgentV7: def __init__(self): self.db_path = DATA_DIR / "multimodular_v7.db" self.db = LocalDB(self.db_path) self.vfs = VFS(self.db) self.csv = CreativeSkillVault(self.db) self.global_sync = GlobalSync(self.db, hf_token=HUGGINGFACE_TOKEN, repo=GLOBAL_SYNC_REPO) # module manager uses GLOBAL_SYNC_SIGNING_PUBKEY if present self.module_mgr = ModuleManager(self.db, signing_pubkey_pem=GLOBAL_SYNC_SIGNING_PUBKEY) self.chb = CHB(self.db, self.vfs, self.csv, self.module_mgr, self.global_sync) self.backup_mgr = BackupManager(self.db, DATA_DIR, BACKUP_DIR) # start realtime ws server in background for incoming updates if websockets is not None: try: self.global_sync.run_ws_in_thread() except Exception as e: log.warning("ws server thread failed: %s", e) # --- user-driven search plan creation (CHB.plan) def plan_search(self, text: str) -> Dict[str,Any]: return self.chb.plan(text) # --- client submits results def submit_plan_results(self, plan_id: str, results: Dict[str,Any]) -> Dict[str,Any]: # Accept results; pass to CHB for verify & learning v = self.chb.handle_plan_results(plan_id, results) # create backup after major update try: bp = self.backup_mgr.create_backup() log.info("backup created: %s", bp) except Exception: log.exception("backup failed") # push to global sync (best-effort) if GLOBAL_SYNC_ENABLED: try: payload = {"type":"fact_skill_update", "ts": now_iso(), "payload": {"summary":"update","plan_id": plan_id}} # attempt HF push or WS broadcast # HF push requires implementation using huggingface_hub; we leave a placeholder asyncio.run(self.global_sync.ws_broadcast(payload)) except Exception: pass return {"ok": True, "verify": v} # --- expose facts/skills def search_facts(self, q: str): return self.vfs.query(q) def top_skills(self, tag: str, k: int=5): return self.csv.top_by_tag(tag, k) def add_module(self, name: str, code: str, signature_b64: Optional[str]=None, autointegrate: bool=True): return self.module_mgr.integrate_module(name, code, signature_b64, autointegrate) def download_latest_backup(self) -> Optional[str]: return self.backup_mgr.download_backup_path() # direct chat route that funnels through CHB def chat(self, text: str, plan_results: Optional[Dict[str,Any]]=None): # For direct chat, if user provided plan_results (client retrieval), handle them if plan_results: v = self.chb.handle_plan_results(uid("plan"), plan_results) return {"status":"ok", "verify": v} # Simple path: CHB will create plan if needed and answer (we re-use simple plan + verify) plan = self.chb.plan(text) # no client retrieval performed: CHB can still reply with local knowledge (fallback) # For v7 we simply return plan and ask client to run it OR CHB will attempt local infer (fallback) return {"status":"ok", "plan": plan, "hint": "Run the plan on client and submit results via submit_plan_results"} # -------------------------- # FastAPI endpoints (added/extended) # -------------------------- if FASTAPI_AVAILABLE: app = FastAPI(title="Multimodular SuperAgent v7.0") AGENT = SuperAgentV7() class PlanIn(BaseModel): text: str @app.post("/v1/plan_search") async def api_plan_search(inp: PlanIn): plan = AGENT.plan_search(inp.text) return {"ok": True, "plan": plan} @app.post("/v1/submit_results") async def api_submit_results(plan_id: str = Form(...), results: str = Form(...)): try: payload = json.loads(results) except Exception: return JSONResponse({"ok": False, "error": "invalid_json"}, status_code=400) out = AGENT.submit_plan_results(plan_id, payload) return out @app.post("/v1/facts/search") async def api_facts_search(q: str = Form(...)): res = AGENT.search_facts(q) return {"ok": True, "results": res} @app.post("/v1/skills/top") async def api_skills_top(tag: str = Form(...), k: int = Form(5)): res = AGENT.top_skills(tag, k) return {"ok": True, "results": res} @app.post("/v1/module/add") async def api_module_add(name: str = Form(...), code: str = Form(...), signature_b64: Optional[str] = Form(None)): out = AGENT.add_module(name, code, signature_b64) return out @app.get("/v1/backup/download") async def api_backup_download(): p = AGENT.download_latest_backup() if not p or not os.path.exists(p): return JSONResponse({"ok": False, "error": "no_backup"}, status_code=404) return FileResponse(p, media_type="application/zip", filename=os.path.basename(p)) @app.post("/v1/chat") async def api_chat(text: str = Form(...), plan_results: Optional[str] = Form(None)): if plan_results: try: pr = json.loads(plan_results) except Exception: return JSONResponse({"ok": False, "error": "invalid_plan_results"}, status_code=400) out = AGENT.chat(text, pr) else: out = AGENT.chat(text, None) return out else: app = None AGENT = SuperAgentV7() # -------------------------- # CLI demo & execution # -------------------------- def demo_run(): print("Multimodular SuperAgent v7.0 - Demo") a = AGENT # 1) plan search plan = a.plan_search("futuristic electric motorcycle neon blue lights battery tech 2025") print("Plan:", plan) # Simulate client retrieval sample_results = { "web": [ {"title":"Solid-state battery prototype reaches 500 Wh/kg", "url":"https://example.org/article", "snippet":"Researchers at X report 500 Wh/kg...", "date": now_iso()} ], "images":[ {"path": str(BASE_DIR / "demo_motorcycle.png"), "quality_score": 0.92, "caption":"Futuristic motorcycle concept", "tags":["motorcycle","futuristic"]} ], "videos": [], "audios": [] } # ensure demo image exists try: from PIL import Image, ImageDraw img = Image.new("RGB", (640,480), (20,20,30)) d = ImageDraw.Draw(img); d.text((20,20), "Demo motorcycle", fill=(200,200,255)) img.save(BASE_DIR / "demo_motorcycle.png") except Exception: pass res = a.submit_plan_results(plan["id"], sample_results) print("Submit results ->", res) # show facts facts = a.search_facts("solid-state") print("Facts:", facts) # download backup path = a.download_latest_backup() print("Backup path:", path) if __name__ == "__main__": import argparse ap = argparse.ArgumentParser() ap.add_argument("--demo", action="store_true") ap.add_argument("--runserver", action="store_true") ap.add_argument("--port", type=int, default=8000) args = ap.parse_args() if args.demo: demo_run() elif args.runserver and FASTAPI_AVAILABLE: import uvicorn uvicorn.run("multimodular_modul version 7.0:app", host="0.0.0.0", port=args.port, reload=False) else: print("Run with --demo or --runserver. FASTAPI available:", FASTAPI_AVAILABLE)