File size: 8,038 Bytes
43cc365
 
 
 
2d70789
 
 
048628f
191a9f9
048628f
43cc365
 
 
191a9f9
 
 
43cc365
 
 
a49d7b2
43cc365
a49d7b2
191a9f9
 
 
 
 
 
 
 
 
 
 
 
 
43cc365
a49d7b2
43cc365
 
a49d7b2
191a9f9
 
 
 
a49d7b2
 
191a9f9
 
 
 
 
 
a49d7b2
 
191a9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cc365
 
 
191a9f9
43cc365
2d70789
 
191a9f9
2d70789
 
a49d7b2
 
 
191a9f9
 
a49d7b2
 
 
 
 
 
 
 
 
191a9f9
 
 
 
 
 
 
a49d7b2
2d70789
 
ab6809d
8afce56
191a9f9
 
a49d7b2
191a9f9
8ac0dd3
a49d7b2
191a9f9
 
 
a49d7b2
8ac0dd3
 
191a9f9
 
8ac0dd3
191a9f9
ab6809d
191a9f9
 
a49d7b2
ab6809d
43cc365
 
191a9f9
 
 
 
 
43cc365
a49d7b2
191a9f9
314bed8
191a9f9
 
1fb027f
191a9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from fastapi import FastAPI, Request
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import platform
import psutil
import multiprocessing
import time
import uuid # For generating unique session IDs

app = FastAPI()

# === Model Config ===
# Switched to TinyLlama-1.1B-Chat-v1.0 for better CPU performance
REPO_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0-GGUF"
FILENAME = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf" # Q4_K_M is a good balance of size and quality
MODEL_DIR = "models"
MODEL_PATH = os.path.join(MODEL_DIR, FILENAME)

# === Download if model not available ===
if not os.path.exists(MODEL_PATH):
    print(f"⬇️ Downloading {FILENAME} from Hugging Face...")
    try:
        model_path = hf_hub_download(
            repo_id=REPO_ID,
            filename=FILENAME,
            cache_dir=MODEL_DIR,
            local_dir=MODEL_DIR,
            local_dir_use_symlinks=False
        )
        print(f"βœ… Model downloaded to: {model_path}")
    except Exception as e:
        print(f"❌ Error downloading model: {e}")
        # Exit or handle error appropriately if model download fails
        exit(1)
else:
    print(f"βœ… Model already available at: {MODEL_PATH}")
    model_path = MODEL_PATH

# === Optimal thread usage ===
# psutil.cpu_count(logical=True) gives the number of logical cores (threads)
# psutil.cpu_count(logical=False) gives the number of physical cores
# For llama.cpp, n_threads often performs best when set to the number of physical cores,
# or slightly more, but not exceeding logical cores. Experimentation is key.
logical_cores = psutil.cpu_count(logical=True)
physical_cores = psutil.cpu_count(logical=False)
# A common recommendation is to use physical cores or physical_cores * 2
# Let's try physical_cores for a start, or a fixed value if physical_cores is too low.
recommended_threads = max(1, physical_cores) # Ensure at least 1 thread

print(f"Detected physical cores: {physical_cores}, logical cores: {logical_cores}")
print(f"Using n_threads: {recommended_threads}")

# === Load the model ===
try:
    llm = Llama(
        model_path=model_path,
        n_ctx=1024,  # Reduced context for TinyLlama, can increase if memory allows and context is critical
        n_threads=recommended_threads,
        use_mlock=True,  # Lock model in RAM for faster access (good for stability on CPU)
        n_gpu_layers=0,  # CPU only, keep at 0 for Hugging Face free tier
        chat_format="chatml",  # TinyLlama Chat uses ChatML format
        verbose=False
    )
    print("πŸš€ Llama model loaded successfully!")
except Exception as e:
    print(f"❌ Error loading Llama model: {e}")
    exit(1)

# === Global dictionary to store chat histories per session ===
# In a production environment, this should be replaced with a persistent storage
# like Redis, a database, or a dedicated session management system.
chat_histories = {}

@app.get("/")
def root():
    return {"message": "βœ… Data Analysis AI API is live and optimized!"}

@app.get("/get_sys")
def get_sys_specs():
    """Returns system specifications including CPU, RAM, and OS details."""
    memory = psutil.virtual_memory()
    return {
        "CPU": {
            "physical_cores": physical_cores,
            "logical_cores": logical_cores,
            "max_freq_mhz": psutil.cpu_freq().max if psutil.cpu_freq() else "N/A",
            "cpu_usage_percent": psutil.cpu_percent(interval=1) # CPU usage over 1 second
        },
        "RAM": {
            "total_GB": round(memory.total / (1024 ** 3), 2),
            "available_GB": round(memory.available / (1024 ** 3), 2),
            "usage_percent": memory.percent
        },
        "System": {
            "platform": platform.platform(),
            "architecture": platform.machine(),
            "python_version": platform.python_version()
        },
        "Model_Config": {
            "model_name": FILENAME,
            "n_ctx": llm.n_ctx(),
            "n_threads": llm.n_threads(),
            "use_mlock": llm.use_mlock()
        }
    }

@app.get("/process_list")
def process_list():
    """Returns a list of processes consuming significant CPU."""
    time.sleep(1)  # Let CPU settle for accurate measurement
    processes = []
    for proc in psutil.process_iter(['pid', 'name', 'cpu_percent', 'memory_percent']):
        try:
            cpu = proc.cpu_percent()
            mem = proc.memory_percent()
            # Filter processes using more than 5% CPU or 2% memory
            if cpu > 5 or mem > 2:
                processes.append({
                    "pid": proc.pid,
                    "name": proc.name(),
                    "cpu_percent": round(cpu, 2),
                    "memory_percent": round(mem, 2)
                })
        except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
            pass
    # Sort by CPU usage descending
    processes.sort(key=lambda x: x['cpu_percent'], reverse=True)
    return {"heavy_processes": processes}

@app.post("/generate")
async def generate(request: Request):
    """
    Generates a response from the LLM, maintaining chat context.
    Expects a JSON body with 'prompt' and optionally 'session_id'.
    If 'session_id' is not provided, a new one will be generated.
    """
    data = await request.json()
    prompt = data.get("prompt", "").strip()
    session_id = data.get("session_id")

    if not prompt:
        return {"error": "Prompt cannot be empty"}, 400

    # Generate a new session ID if not provided (for new conversations)
    if not session_id:
        session_id = str(uuid.uuid4())
        # Initialize chat history for a new session with a system message
        chat_histories[session_id] = [
            {"role": "system", "content": "You are a helpful AI assistant for data analysis. Provide concise and actionable suggestions based on the data provided or questions asked. Keep your responses focused on data insights and actionable steps for report generation."}
        ]
        print(f"πŸ†• New session created: {session_id}")
    elif session_id not in chat_histories:
        # If a session ID is provided but not found, re-initialize it
        chat_histories[session_id] = [
            {"role": "system", "content": "You are a helpful AI assistant for data analysis. Provide concise and actionable suggestions based on the data provided or questions asked. Keep your responses focused on data insights and actionable steps for report generation."}
        ]
        print(f"⚠️ Session ID {session_id} not found, re-initializing history.")

    print(f"🧾 Prompt received for session {session_id}: {prompt}")

    # Add the user's new message to the history for this session
    chat_histories[session_id].append({"role": "user", "content": prompt})

    try:
        # Pass the entire chat history for context
        response = llm.create_chat_completion(
            messages=chat_histories[session_id],
            max_tokens=512,  # Limit response length for faster generation
            temperature=0.7, # Adjust temperature for creativity vs. coherence (0.0-1.0)
            stop=["</s>"] # Stop sequence for TinyLlama Chat
        )

        ai_response_content = response["choices"][0]["message"]["content"].strip()

        # Add the AI's response to the history for future turns
        chat_histories[session_id].append({"role": "assistant", "content": ai_response_content})

        return {
            "response": ai_response_content,
            "session_id": session_id # Return the session_id so the client can use it for subsequent requests
        }
    except Exception as e:
        print(f"❌ Error during generation for session {session_id}: {e}")
        # Remove the last user message from history if generation failed to prevent bad state
        if chat_histories[session_id] and chat_histories[session_id][-1]["role"] == "user":
            chat_histories[session_id].pop()
        return {"error": f"Failed to generate response: {e}. Please try again.", "session_id": session_id}, 500