Priyanshukr-1's picture
Update app.py
cb82ced verified
from fastapi import FastAPI, Request
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import platform
import psutil
import multiprocessing
import time
import tiktoken # For estimating token count
import logging # Import the logging module
# === Configure Logging ===
# Get the root logger
logger = logging.getLogger(__name__)
# Set the logging level (e.g., INFO, DEBUG, WARNING, ERROR, CRITICAL)
logger.setLevel(logging.INFO)
# Create a console handler and set its format
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
# Add the handler to the logger if it's not already added
if not logger.handlers:
logger.addHandler(handler)
app = FastAPI()
# === Model Config ===
REPO_ID = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
FILENAME = "mistral-7b-instruct-v0.2.Q4_K_M.gguf"
MODEL_DIR = "models"
MODEL_PATH = os.path.join(MODEL_DIR, FILENAME)
# === Download if model not available ===
if not os.path.exists(MODEL_PATH):
logger.info(f"⬇️ Downloading {FILENAME} from Hugging Face...")
try:
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=FILENAME,
cache_dir=MODEL_DIR,
local_dir=MODEL_DIR,
local_dir_use_symlinks=False
)
logger.info(f"✅ Model downloaded to: {model_path}")
except Exception as e:
logger.error(f"❌ Error downloading model: {e}")
# Exit or handle error appropriately if model download fails
exit(1)
else:
logger.info(f"✅ Model already available at: {MODEL_PATH}")
model_path = MODEL_PATH
# === Optimal thread usage ===
logical_cores = psutil.cpu_count(logical=True)
physical_cores = psutil.cpu_count(logical=False)
recommended_threads = max(1, physical_cores) # Ensure at least 1 thread
logger.info(f"Detected physical cores: {physical_cores}, logical cores: {logical_cores}")
logger.info(f"Using n_threads: {recommended_threads}")
# === Load the model ===
try:
llm = Llama(
model_path=model_path,
n_ctx=2048, # Context window size for the model (still needed, but not fully utilized for history)
n_threads=recommended_threads,
use_mlock=True, # Lock model in RAM for faster access
n_gpu_layers=0, # CPU only
chat_format="chatml", # TinyLlama Chat uses ChatML format
verbose=False # Keep llama.cpp's internal verbose logging off
)
logger.info("� Llama model loaded successfully!")
except Exception as e:
logger.error(f"❌ Error loading Llama model: {e}")
exit(1)
# Initialize tiktoken encoder for token counting
try:
encoding = tiktoken.get_encoding("cl100k_base")
except Exception:
logger.warning("⚠️ Could not load tiktoken 'cl100k_base' encoding. Token count for prompt might be less accurate.")
encoding = None
def count_tokens_in_text(text):
"""Estimates tokens in a given text using tiktoken or simple char count."""
if encoding:
return len(encoding.encode(text))
else:
# Fallback for when tiktoken isn't available or for simple estimation
return len(text) // 4 # Rough estimate: 1 token ~ 4 characters
@app.get("/")
def root():
logger.info("Root endpoint accessed.")
return {"message": "✅ Data Analysis AI API is live and optimized for speed (no context retention)!"}
@app.get("/get_sys")
def get_sys_specs():
"""Returns system specifications including CPU, RAM, and OS details."""
logger.info("System specs endpoint accessed.")
memory = psutil.virtual_memory()
return {
"CPU": {
"physical_cores": physical_cores,
"logical_cores": logical_cores,
"max_freq_mhz": psutil.cpu_freq().max if psutil.cpu_freq() else "N/A",
"cpu_usage_percent": psutil.cpu_percent(interval=1) # CPU usage over 1 second
},
"RAM": {
"total_GB": round(memory.total / (1024 ** 3), 2),
"available_GB": round(memory.available / (1024 ** 3), 2),
"usage_percent": memory.percent
},
"System": {
"platform": platform.platform(),
"architecture": platform.machine(),
"python_version": platform.python_version()
},
"Model_Config": {
"model_name": FILENAME,
"n_ctx": llm.n_ctx(),
"n_threads": llm.n_threads(),
"use_mlock": llm.use_mlock()
}
}
@app.get("/process_list")
def process_list():
"""Returns a list of processes consuming significant CPU."""
logger.info("Process list endpoint accessed.")
time.sleep(1) # Let CPU settle for accurate measurement
processes = []
for proc in psutil.process_iter(['pid', 'name', 'cpu_percent', 'memory_percent']):
try:
cpu = proc.cpu_percent()
mem = proc.memory_percent()
# Filter processes using more than 5% CPU or 2% memory
if cpu > 5 or mem > 2:
processes.append({
"pid": proc.pid,
"name": proc.name(),
"cpu_percent": round(cpu, 2),
"memory_percent": round(mem, 2)
})
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass
# Sort by CPU usage descending
processes.sort(key=lambda x: x['cpu_percent'], reverse=True)
return {"heavy_processes": processes}
@app.post("/generate")
async def generate(request: Request):
"""
Generates a response from the LLM without retaining chat context.
Expects a JSON body with 'prompt'.
"""
logger.info("➡️ /generate endpoint received a request.")
data = await request.json()
user_input = data.get("prompt", "").strip() # Renamed to user_input for clarity
if not user_input:
logger.warning("Prompt cannot be empty in /generate request.")
return {"error": "Prompt cannot be empty"}, 400
# Define the system prompt - sent with every request
system_prompt_content = (
"You are a highly efficient and objective data analysis API. You are the 'assistant'. "
"Your sole function is to process the user's data and instructions, then output ONLY the requested analysis in the specified format. "
"**Crucially, do NOT include any conversational text, greetings, introductions, conclusions, or any remarks about being an AI.** "
"Respond directly with the content. Adhere strictly to all formatting requirements. "
"If a request cannot be fulfilled, respond ONLY with: 'STATUS: FAILED_ANALYSIS; REASON: Unable to process this specific analytical request due to limitations.'"
)
# === FIX: Wrap user input in a clear instruction to prevent role confusion ===
# This frames the user's text as 'data' for the model to analyze.
user_content_template = f"""Please analyze the following data based on the instructions within it.
Provide only the direct output as requested. Do not add any extra conversational text.
--- DATA ---
{user_input}
"""
# Construct messages for the current request only
messages_for_llm = [
{"role": "system", "content": system_prompt_content},
{"role": "user", "content": user_content_template} # Use the new template
]
# Calculate tokens in the user's prompt
prompt_tokens = count_tokens_in_text(user_input)
logger.info(f"🧾 Original user input: {user_input}")
logger.info(f"Tokens in prompt: {prompt_tokens}")
try:
response = llm.create_chat_completion(
messages=messages_for_llm,
max_tokens=800,
# === FIX: Lower temperature for more factual, less creative output ===
temperature=0.2,
# === FIX: Use the CORRECT stop token for the chatml format ===
stop=["<|im_end|>"]
)
ai_response_content = response["choices"][0]["message"]["content"].strip()
response_token_count = count_tokens_in_text(ai_response_content)
logger.info("✅ Response generated successfully.")
return {
"response": ai_response_content,
"prompt_tokens": prompt_tokens,
"response_token_count": response_token_count
}
except Exception as e:
logger.error(f"❌ Error during generation: {e}", exc_info=True)
return {"error": f"Failed to generate response: {e}. Please try again."}, 500