Spaces:
Sleeping
Sleeping
File size: 18,011 Bytes
14ffd10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
#!/usr/bin/env python3
"""
Just search - A Smart Search Agent using Menlo/Lucy-128k
Part of the Just, AKA Simple series
Built with Gradio, DuckDuckGo Search, and Hugging Face Transformers
"""
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from duckduckgo_search import DDGS
import json
import re
import time
from typing import List, Dict, Tuple
import spaces
# Initialize the model and tokenizer globally for efficiency
MODEL_NAME = "Menlo/Lucy-128k"
tokenizer = None
model = None
search_pipeline = None
def initialize_model():
"""Initialize the Menlo/Lucy-128k model and tokenizer"""
global tokenizer, model, search_pipeline
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
search_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
max_new_tokens=2048,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return True
except Exception as e:
print(f"Error initializing model: {e}")
return False
def extract_thinking_and_response(text: str) -> Tuple[str, str]:
"""Extract thinking process and clean response from AI output"""
thinking = ""
response = text
# Extract thinking content
thinking_match = re.search(r'<think>(.*?)</think>', text, re.DOTALL)
if thinking_match:
thinking = thinking_match.group(1).strip()
response = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
# Clean up the response
response = re.sub(r'^(Assistant:|AI:|Response:|Answer:)\s*', '', response.strip())
response = re.sub(r'\[INST\].*?\[\/INST\]', '', response)
response = re.sub(r'<\|.*?\|>', '', response)
return thinking.strip(), response.strip()
def clean_response(text: str) -> str:
"""Clean up the AI response to extract just the relevant content"""
_, response = extract_thinking_and_response(text)
return response
@spaces.GPU
def generate_search_queries(user_query: str) -> Tuple[List[str], str]:
"""Generate multiple search queries based on user input using AI"""
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a search query generator. Given a user's question, generate 3-5 different search queries that would help find comprehensive information to answer their question. Return only the search queries, one per line, without numbering or bullet points.
Example:
User: "What are the latest developments in AI?"
latest AI developments 2024
artificial intelligence breakthroughs recent
AI technology advances news
machine learning innovations 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>
{user_query}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
try:
response = search_pipeline(prompt, max_new_tokens=200, temperature=0.3)
generated_text = response[0]['generated_text']
# Extract just the assistant's response
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
thinking, cleaned_response = extract_thinking_and_response(assistant_response)
# Split into individual queries and clean them
queries = [q.strip() for q in cleaned_response.split('\n') if q.strip()]
# Filter out any non-query text
queries = [q for q in queries if len(q) > 5 and not q.startswith('Note:') and not q.startswith('Example:')]
return queries[:5], thinking # Return max 5 queries and thinking
except Exception as e:
print(f"Error generating queries: {e}")
# Fallback to simple query variations
return [user_query, f"{user_query} 2024", f"{user_query} latest"], ""
def search_web(queries: List[str]) -> List[Dict]:
"""Search the web using DuckDuckGo with multiple queries"""
all_results = []
ddgs = DDGS()
for query in queries:
try:
results = ddgs.text(query, max_results=5, region='wt-wt', safesearch='moderate')
for result in results:
result['search_query'] = query
all_results.append(result)
time.sleep(0.5) # Rate limiting
except Exception as e:
print(f"Error searching for '{query}': {e}")
continue
# Remove duplicates based on URL
seen_urls = set()
unique_results = []
for result in all_results:
if result['href'] not in seen_urls:
seen_urls.add(result['href'])
unique_results.append(result)
return unique_results[:15] # Return max 15 results
@spaces.GPU
def filter_relevant_results(user_query: str, search_results: List[Dict]) -> Tuple[List[Dict], str]:
"""Use AI to filter and rank search results by relevance"""
if not search_results:
return [], ""
# Prepare results summary for AI
results_text = ""
for i, result in enumerate(search_results[:12]): # Limit to avoid token overflow
results_text += f"{i+1}. Title: {result.get('title', 'No title')}\n"
results_text += f" URL: {result.get('href', 'No URL')}\n"
results_text += f" Snippet: {result.get('body', 'No description')[:200]}...\n\n"
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a search result evaluator. Given a user's question and search results, identify which results are most relevant and helpful for answering the question.
Return only the numbers of the most relevant results (1-5 results maximum), separated by commas. Consider:
- Direct relevance to the question
- Credibility of the source
- Recency of information
- Comprehensiveness of content
Example response: 1, 3, 7
<|eot_id|><|start_header_id|>user<|end_header_id|>
Question: {user_query}
Search Results:
{results_text}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
try:
response = search_pipeline(prompt, max_new_tokens=100, temperature=0.1)
generated_text = response[0]['generated_text']
# Extract assistant's response
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
thinking, cleaned_response = extract_thinking_and_response(assistant_response)
# Extract numbers
numbers = re.findall(r'\d+', cleaned_response)
selected_indices = [int(n) - 1 for n in numbers if int(n) <= len(search_results)]
return [search_results[i] for i in selected_indices if 0 <= i < len(search_results)][:5], thinking
except Exception as e:
print(f"Error filtering results: {e}")
return search_results[:5], "" # Fallback to first 5 results
@spaces.GPU
def generate_final_answer(user_query: str, selected_results: List[Dict]) -> Tuple[str, str]:
"""Generate final answer based on selected search results"""
if not selected_results:
return "I couldn't find relevant information to answer your question. Please try rephrasing your query.", ""
# Prepare context from selected results
context = ""
for i, result in enumerate(selected_results):
context += f"Source {i+1}: {result.get('title', 'Unknown')}\n"
context += f"Content: {result.get('body', 'No content available')}\n"
context += f"URL: {result.get('href', 'No URL')}\n\n"
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful research assistant. Based on the provided search results, give a comprehensive answer to the user's question.
Guidelines:
- Synthesize information from multiple sources
- Be accurate and factual
- Cite sources when possible
- If information is conflicting, mention it
- Keep the answer well-structured and easy to read
- Include relevant URLs for further reading
<|eot_id|><|start_header_id|>user<|end_header_id|>
Question: {user_query}
Search Results:
{context}
Please provide a comprehensive answer based on these sources.
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
try:
response = search_pipeline(prompt, max_new_tokens=1024, temperature=0.2)
generated_text = response[0]['generated_text']
# Extract assistant's response
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
thinking, answer = extract_thinking_and_response(assistant_response)
return answer, thinking
except Exception as e:
print(f"Error generating final answer: {e}")
return "I encountered an error while processing the search results. Please try again.", ""
def search_agent_workflow(user_query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
"""Main workflow that orchestrates the search agent"""
if not user_query.strip():
return "Please enter a search query.", "", ""
progress(0.1, desc="Initializing...")
all_thinking = []
# Step 1: Generate search queries
progress(0.2, desc="Generating search queries...")
queries, thinking1 = generate_search_queries(user_query)
if thinking1:
all_thinking.append(f"**Query Generation:**\n{thinking1}")
queries_text = "Generated queries:\n" + "\n".join(f"β’ {q}" for q in queries)
# Step 2: Search the web
progress(0.4, desc="Searching the web...")
search_results = search_web(queries)
if not search_results:
return "No search results found. Please try a different query.", queries_text, "\n\n".join(all_thinking)
# Step 3: Filter relevant results
progress(0.6, desc="Filtering relevant results...")
relevant_results, thinking2 = filter_relevant_results(user_query, search_results)
if thinking2:
all_thinking.append(f"**Result Filtering:**\n{thinking2}")
# Step 4: Generate final answer
progress(0.8, desc="Generating comprehensive answer...")
final_answer, thinking3 = generate_final_answer(user_query, relevant_results)
if thinking3:
all_thinking.append(f"**Answer Generation:**\n{thinking3}")
progress(1.0, desc="Complete!")
# Prepare debug info
debug_info = f"{queries_text}\n\nSelected {len(relevant_results)} relevant sources:\n"
for i, result in enumerate(relevant_results):
debug_info += f"{i+1}. {result.get('title', 'No title')} - {result.get('href', 'No URL')}\n"
thinking_display = "\n\n".join(all_thinking) if all_thinking else "No thinking process recorded."
return final_answer, debug_info, thinking_display
# Custom CSS for dark blue theme and mobile responsiveness
custom_css = """
/* Dark blue theme */
:root {
--primary-bg: #0a1628;
--secondary-bg: #1e3a5f;
--accent-bg: #2563eb;
--text-primary: #f8fafc;
--text-secondary: #cbd5e1;
--border-color: #334155;
--input-bg: #1e293b;
--button-bg: #3b82f6;
--button-hover: #2563eb;
}
/* Global styles */
.gradio-container {
background: linear-gradient(135deg, var(--primary-bg) 0%, var(--secondary-bg) 100%) !important;
color: var(--text-primary) !important;
font-family: 'Inter', 'Segoe UI', system-ui, sans-serif !important;
}
/* Mobile responsiveness */
@media (max-width: 768px) {
.gradio-container {
padding: 10px !important;
}
.gr-form {
gap: 15px !important;
}
.gr-button {
font-size: 16px !important;
padding: 12px 20px !important;
}
}
/* Input styling */
.gr-textbox textarea, .gr-textbox input {
background: var(--input-bg) !important;
border: 1px solid var(--border-color) !important;
color: var(--text-primary) !important;
border-radius: 8px !important;
}
/* Button styling */
.gr-button {
background: linear-gradient(135deg, var(--button-bg) 0%, var(--accent-bg) 100%) !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.gr-button:hover {
background: linear-gradient(135deg, var(--button-hover) 0%, var(--button-bg) 100%) !important;
transform: translateY(-1px) !important;
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.3) !important;
}
/* Output styling */
.gr-markdown, .gr-textbox {
background: var(--input-bg) !important;
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
color: var(--text-primary) !important;
}
/* Header styling */
.gr-markdown h1 {
color: var(--accent-bg) !important;
text-align: center !important;
margin-bottom: 20px !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
}
/* Thinking section styling */
#thinking-output {
background: var(--secondary-bg) !important;
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
padding: 15px !important;
font-family: 'Fira Code', 'Monaco', monospace !important;
font-size: 0.9rem !important;
line-height: 1.4 !important;
}
/* Loading animation */
.gr-loading {
background: var(--secondary-bg) !important;
border-radius: 8px !important;
}
/* Scrollbar styling */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: var(--primary-bg);
}
::-webkit-scrollbar-thumb {
background: var(--accent-bg);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--button-hover);
}
"""
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
theme=gr.themes.Base(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
text_size="lg",
spacing_size="lg",
radius_size="md"
),
css=custom_css,
title="Just search - AI Search Agent",
head="<meta name='viewport' content='width=device-width, initial-scale=1.0'>"
) as interface:
gr.Markdown("# π Just search", elem_id="header")
gr.Markdown(
"*Part of the Just, AKA Simple series*\n\n"
"**Intelligent search agent powered by Menlo/Lucy-128k**\n\n"
"Ask any question and get comprehensive answers from the web.",
elem_id="description"
)
with gr.Row():
with gr.Column(scale=4):
query_input = gr.Textbox(
label="Your Question",
placeholder="Ask me anything... (e.g., 'What are the latest developments in AI?')",
lines=2,
elem_id="query-input"
)
with gr.Column(scale=1):
search_btn = gr.Button(
"π Search",
variant="primary",
size="lg",
elem_id="search-button"
)
with gr.Row():
answer_output = gr.Markdown(
label="Answer",
elem_id="answer-output",
height=400
)
with gr.Accordion("π€ AI Thinking Process", open=False):
thinking_output = gr.Markdown(
label="Model's Chain of Thought",
elem_id="thinking-output",
height=300
)
with gr.Accordion("π§ Debug Info", open=False):
debug_output = gr.Textbox(
label="Search Process Details",
lines=8,
elem_id="debug-output"
)
# Event handlers
search_btn.click(
fn=search_agent_workflow,
inputs=[query_input],
outputs=[answer_output, debug_output, thinking_output],
show_progress=True
)
query_input.submit(
fn=search_agent_workflow,
inputs=[query_input],
outputs=[answer_output, debug_output, thinking_output],
show_progress=True
)
# Example queries
gr.Examples(
examples=[
["What are the latest breakthroughs in quantum computing?"],
["How does climate change affect ocean currents?"],
["What are the best practices for sustainable agriculture?"],
["Explain the recent developments in renewable energy technology"],
["What are the health benefits of the Mediterranean diet?"]
],
inputs=query_input,
outputs=[answer_output, debug_output, thinking_output],
fn=search_agent_workflow,
cache_examples=False
)
gr.Markdown(
"---\n**Note:** This search agent generates multiple queries, searches the web, "
"filters results for relevance, and provides comprehensive answers. "
"Results are sourced from DuckDuckGo search."
)
return interface
def main():
"""Main function to initialize and launch the app"""
print("π Initializing Just search...")
# Initialize the model
if not initialize_model():
print("β Failed to initialize model. Please check your setup.")
return
print("β
Model initialized successfully!")
print("π Creating interface...")
# Create and launch the interface
interface = create_interface()
print("π Just search is ready!")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=True
)
if __name__ == "__main__":
main() |