videoswapper / app.py
Profakerr's picture
Upload 2 files
0408575 verified
raw
history blame
10.9 kB
import onnxruntime as ort
from huggingface_hub import hf_hub_download
import requests
import os
import gradio as gr
import spaces
from typing import Any, List, Callable
import cv2
import insightface
import time
import tempfile
import subprocess
import gfpgan
print("Installing cuDNN 9")
import subprocess
import sys
def get_pip_version(package_name):
try:
result = subprocess.run(
[sys.executable, '-m', 'pip', 'show', package_name],
capture_output=True,
text=True,
check=True
)
output = result.stdout
version_line = next(line for line in output.split('\n') if line.startswith('Version:'))
return version_line.split(': ')[1]
except subprocess.CalledProcessError as e:
print(f"Error executing command: {e}")
return None
package_name = 'nvidia-cudnn-cu12'
version = get_pip_version(package_name)
print(f"The installed version of {package_name} is: {version}")
command = "find / -path /proc -prune -o -path /sys -prune -o -name 'libcudnn*' -print"
process = subprocess.run(command, shell=True, text=True, capture_output=True)
if process.returncode == 0:
print("Search results:\n", process.stdout)
else:
print("An error occurred while executing the command:", process.stderr)
source_path = '/usr/local/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12'
destination_path = '/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/'
commands = [
['mv', source_path, destination_path],
['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12", destination_path],
['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11", destination_path],
['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11", destination_path],
['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12", destination_path],
['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12", destination_path],
['cp', "/usr/local/lib/python3.10/site-packages/nvidia/curand/lib/libcurand.so.10", destination_path],
['cp', "/usr/local/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolver.so.11", destination_path],
['cp', "/usr/local/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolverMg.so.11", destination_path],
['cp', "/usr/local/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12", destination_path],
]
for command in commands:
subprocess.run(command, check=True)
command = "find / -path /proc -prune -o -path /sys -prune -o -name 'libcu*' -print"
process = subprocess.run(command, shell=True, text=True, capture_output=True)
if process.returncode == 0:
print("Search results:\n", process.stdout)
else:
print("An error occurred while executing the command:", process.stderr)
print("Done")
print("---------------------")
print(ort.get_available_providers())
def conditional_download(download_directory_path, urls):
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
filename = url.split('/')[-1]
file_path = os.path.join(download_directory_path, filename)
if not os.path.exists(file_path):
print(f"Downloading {filename}...")
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"{filename} downloaded successfully.")
else:
print(f"Failed to download {filename}. Status code: {response.status_code}")
else:
print(f"{filename} already exists. Skipping download.")
model_path = hf_hub_download(repo_id="countfloyd/deepfake", filename="inswapper_128.onnx")
conditional_download("./", ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth'])
FACE_SWAPPER = None
FACE_ANALYSER = None
FACE_ENHANCER = None
@spaces.GPU(duration=300, enable_queue=True)
def process_video(source_path: str, target_path: str, enhance=False, progress=gr.Progress(), output_path='result.mp4') -> None:
def get_face_analyser():
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=["CUDAExecutionProvider"])
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
return FACE_ANALYSER
def get_face_enhancer() -> Any:
global FACE_ENHANCER
if FACE_ENHANCER is None:
FACE_ENHANCER = gfpgan.GFPGANer(model_path="./GFPGANv1.4.pth", upscale=2) # type: ignore[attr-defined]
return FACE_ENHANCER
def get_one_face(frame):
face = get_face_analyser().get(frame)
try:
return min(face, key=lambda x: x.bbox[0])
except ValueError:
return None
def get_face_swapper():
global FACE_SWAPPER
if FACE_SWAPPER is None:
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=["CUDAExecutionProvider"])
return FACE_SWAPPER
def swap_face(source_face, target_face, temp_frame):
return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
def process_frame(source_face, temp_frame, enhance):
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = swap_face(source_face, target_face, temp_frame)
if enhance:
temp_frame = enhance_face(temp_frame)
return temp_frame
def process_image(source_path: str, target_path: str, output_path: str) -> None:
source_face = get_one_face(cv2.imread(source_path))
target_frame = cv2.imread(target_path)
result = process_frame(source_face, target_frame)
cv2.imwrite(output_path, result)
def create_temp_directory():
temp_dir = tempfile.mkdtemp()
return temp_dir
def enhance_face(temp_frame):
_, _, temp_frame = get_face_enhancer().enhance(
temp_frame,
paste_back=True
)
return temp_frame
def remove_temp_directory(temp_dir):
try:
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
if os.path.isfile(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
os.rmdir(file_path)
os.rmdir(temp_dir)
except Exception as e:
print(f"Error removing temporary directory: {e}")
def extract_frames(video_path: str):
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
print("Error opening video.")
return []
frames = []
while True:
ret, frame = video_capture.read()
if not ret:
break
frames.append(frame)
video_capture.release()
return frames
def get_video_fps(video_path: str) -> float:
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
raise ValueError("Error opening video.")
fps = video_capture.get(cv2.CAP_PROP_FPS)
video_capture.release()
return fps
def create_video_from_frames(temp_dir: str, output_video_path: str, fps: float) -> None:
temp_frames_pattern = os.path.join(temp_dir, "frame_%04d.jpg")
ffmpeg_command = [
'ffmpeg',
'-y',
'-framerate', str(fps),
'-i', temp_frames_pattern,
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
'-preset', 'ultrafast',
output_video_path
]
subprocess.run(ffmpeg_command, check=True)
def extract_audio(video_path: str, audio_path: str) -> None:
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', video_path,
'-q:a', '0',
'-map', 'a',
'-preset', 'ultrafast',
audio_path
]
subprocess.run(ffmpeg_command, check=True)
def add_audio_to_video(video_path: str, audio_path: str, output_video_path: str) -> None:
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', video_path,
'-i', audio_path,
'-c:v', 'copy',
'-c:a', 'aac',
'-strict', 'experimental',
'-preset', 'ultrafast',
output_video_path
]
subprocess.run(ffmpeg_command, check=True)
def delete_file(file_path: str) -> None:
try:
os.remove(file_path)
except Exception as e:
print(f"Error removing file: {e}")
def reduce_video(video_path: str, output_video_path: str) -> None:
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', video_path,
'-vf', "scale='if(gte(iw,ih),720,-1)':'if(gte(iw,ih),-1,720)',pad=ceil(iw/2)*2:ceil(ih/2)*2",
'-preset', 'ultrafast',
'-r', '24',
output_video_path
]
subprocess.run(ffmpeg_command, check=True)
temp_dir = create_temp_directory()
video_input = temp_dir + "/input.mp4"
reduce_video(target_path, video_input)
source_face = get_one_face(cv2.imread(source_path))
frames = extract_frames(video_input)
for index, frame in progress.tqdm(enumerate(frames), total=len(frames)):
processed_frame = process_frame(source_face, frame, enhance)
frame_filename = os.path.join(temp_dir, f"frame_{index:04d}.jpg")
cv2.imwrite(frame_filename, processed_frame)
video_path = temp_dir + "/out.mp4"
create_video_from_frames(temp_dir, video_path, get_video_fps(video_input))
audio_path = temp_dir + "/audio.wav"
extract_audio(video_input, audio_path)
add_audio_to_video(video_path, audio_path, output_path)
remove_temp_directory(temp_dir)
return output_path
app = gr.Interface(
fn=process_video,
inputs=[gr.Image(type='filepath'), gr.Video(), gr.Checkbox(label="Use Face GAN (increase render time)", value=False)],
outputs=[gr.Video()],
description="Videos get downsampled to 720p and 24fps. To modify the code or purchase a modification, send an email to [email protected] to donate to the owner of the space: https://donate.stripe.com/3csg0D0tadXU4mYcMM"
)
app.launch()