# import streamlit as st | |
# import pandas as pd | |
# from app_config import AppConfig # Import the configurations class | |
# from data_processor import DataProcessor # Import the data analysis class | |
# from visualization import Visualization # Import the data viz class | |
# from ai_analysis import AIAnalysis # Import the ai analysis class | |
# from sidebar import Sidebar # Import the Sidebar class | |
# from report import ReportGenerator | |
# def main(): | |
# # Initialize the app configuration | |
# app_config = AppConfig() | |
# # Initialize the session state | |
# if 'ai_recommendations' not in st.session_state: | |
# st.session_state.ai_recommendations = None | |
# # Initialize the sidebar | |
# sidebar = Sidebar() | |
# sidebar.display() | |
# # Initialize the data processor | |
# data_processor = DataProcessor() | |
# # Initialize the visualization handler | |
# visualization = Visualization() | |
# # Initialize the AI analysis handler | |
# ai_analysis = AIAnalysis(data_processor.client) | |
# st.title("Literacy Implementation Record Data Analysis") | |
# # Add the descriptive text | |
# st.markdown(""" | |
# This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction? | |
# """) | |
# # Date selection option | |
# date_option = st.radio( | |
# "Select data range:", | |
# ("All Data", "Date Range") | |
# ) | |
# # Initialize start and end date variables | |
# start_date = None | |
# end_date = None | |
# if date_option == "Date Range": | |
# # Prompt user to enter start and end dates | |
# start_date = st.date_input("Start Date") | |
# end_date = st.date_input("End Date") | |
# # Ensure start date is before end date | |
# if start_date > end_date: | |
# st.error("Start date must be before end date.") | |
# return | |
# # File uploader | |
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"]) | |
# if uploaded_file is not None: | |
# try: | |
# # Read the Excel file into a DataFrame | |
# df = data_processor.read_excel(uploaded_file) | |
# # Format the session data | |
# df = data_processor.format_session_data(df) | |
# # Replace student names with initials | |
# df = data_processor.replace_student_names_with_initials(df) | |
# # Filter data if date range is selected | |
# if date_option == "Date Range": | |
# # Convert start_date and end_date to datetime | |
# start_date = pd.to_datetime(start_date).date() | |
# end_date = pd.to_datetime(end_date).date() | |
# # Identify the date column | |
# date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) | |
# if date_column: | |
# # Filter the DataFrame based on the selected date range | |
# df = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)] | |
# else: | |
# st.error("Date column not found in the data.") | |
# return | |
# st.subheader("Uploaded Data") | |
# st.write(df) | |
# # Ensure the intervention column is determined | |
# intervention_column = data_processor.get_intervention_column(df) | |
# if intervention_column not in df.columns: | |
# st.error(f"Expected column '{intervention_column}' not found.") | |
# return | |
# # Compute Intervention Session Statistics | |
# intervention_stats = data_processor.compute_intervention_statistics(df) | |
# st.subheader("Intervention Dosage") | |
# st.write(intervention_stats) | |
# # Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency | |
# col1, col2 = st.columns([3, 1]) # Set the column width ratio | |
# with col1: | |
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats) | |
# with col2: | |
# intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0] | |
# # Display the "Intervention Dosage (%)" text | |
# st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True) | |
# # Display the frequency value below it | |
# st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True) | |
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png") | |
# # Compute Student Metrics | |
# student_metrics_df = data_processor.compute_student_metrics(df) | |
# st.subheader("Student Attendance and Engagement") | |
# st.write(student_metrics_df) | |
# # Compute Student Metric Averages | |
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df) | |
# # Plot and download student metrics | |
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats) | |
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png") | |
# # Evaluate each student and build decision tree diagrams | |
# student_metrics_df['Evaluation'] = student_metrics_df.apply( | |
# lambda row: data_processor.evaluate_student(row), axis=1 | |
# ) | |
# st.subheader("Student Evaluations") | |
# st.write(student_metrics_df[['Student', 'Evaluation']]) | |
# # Build and display decision tree diagrams for each student | |
# for index, row in student_metrics_df.iterrows(): | |
# tree_diagram = visualization.build_tree_diagram(row) | |
# # Get the student's name from the DataFrame | |
# student_name = row['Student'] | |
# # Use st.expander to wrap the graphviz chart with the student's name | |
# with st.expander(f"{student_name} Decision Tree", expanded=False): | |
# st.graphviz_chart(tree_diagram.source) | |
# # Generate Notes and Recommendations using LLM | |
# if st.session_state.ai_recommendations is None: | |
# with st.spinner("Generating MTSS.ai Analysis..."): | |
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df) | |
# # recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input) | |
# recommendations = ai_analysis.prompt_response_from_mistral_llm(llm_input) | |
# st.session_state.ai_recommendations = recommendations | |
# # Display the recommendations | |
# st.subheader("MTSS.ai Analysis") | |
# # st.markdown(recommendations) | |
# st.markdown(st.session_state.ai_recommendations) | |
# # Download AI output | |
# # ai_analysis.download_llm_output(recommendations, "MTSSai_Report.txt") | |
# ai_analysis.download_llm_output(st.session_state.ai_recommendations, "MTSSai_Report.txt") | |
# # Generate the PDF Report using the stored recommendations | |
# report_gen = ReportGenerator() | |
# combined_pdf = report_gen.create_combined_pdf( | |
# intervention_fig, | |
# student_metrics_fig, | |
# st.session_state.ai_recommendations | |
# ) | |
# # Add the download button for the PDF | |
# st.download_button( | |
# label="Download MTSS.ai Report (PDF)", | |
# data=combined_pdf, | |
# file_name="MTSSai_LIR_Report.pdf", | |
# mime="application/pdf", | |
# icon="📄", | |
# use_container_width=True | |
# ) | |
# except Exception as e: | |
# st.error(f"Error processing the file: {str(e)}") | |
# if __name__ == '__main__': | |
# main() | |
import streamlit as st | |
import pandas as pd | |
from app_config import AppConfig # Import the configurations class | |
from data_processor import DataProcessor # Import the data analysis class | |
from visualization import Visualization # Import the data viz class | |
from ai_analysis import AIAnalysis # Import the ai analysis class | |
from sidebar import Sidebar # Import the Sidebar class | |
from report import ReportGenerator | |
def main(): | |
# Initialize the app configuration | |
app_config = AppConfig() | |
# Initialize the session state | |
if 'ai_recommendations' not in st.session_state: | |
st.session_state.ai_recommendations = None | |
# Initialize the sidebar | |
sidebar = Sidebar() | |
sidebar.display() | |
# Initialize the data processor | |
data_processor = DataProcessor() | |
# Initialize the visualization handler | |
visualization = Visualization() | |
# Initialize the AI analysis handler | |
ai_analysis = AIAnalysis(data_processor.client) | |
st.title("Literacy Implementation Record Data Analysis") | |
# Add the descriptive text | |
st.markdown(""" | |
This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction? | |
""") | |
# Date selection option | |
date_option = st.radio( | |
"Select data range:", | |
("All Data", "Date Range") | |
) | |
# Initialize start and end date variables | |
start_date = None | |
end_date = None | |
if date_option == "Date Range": | |
# Prompt user to enter start and end dates | |
start_date = st.date_input("Start Date") | |
end_date = st.date_input("End Date") | |
# Ensure start date is before end date | |
if start_date > end_date: | |
st.error("Start date must be before end date.") | |
return | |
# File uploader | |
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"]) | |
if uploaded_file is not None: | |
try: | |
# Read the Excel file into a DataFrame | |
df = data_processor.read_excel(uploaded_file) | |
# Format the session data | |
df = data_processor.format_session_data(df) | |
# Replace student names with initials | |
df = data_processor.replace_student_names_with_initials(df) | |
# Filter data if date range is selected | |
if date_option == "Date Range": | |
# Convert start_date and end_date to datetime | |
start_date = pd.to_datetime(start_date).date() | |
end_date = pd.to_datetime(end_date).date() | |
# Identify the date column | |
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) | |
if date_column: | |
# Filter the DataFrame based on the selected date range | |
df = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)] | |
else: | |
st.error("Date column not found in the data.") | |
return | |
st.subheader("Uploaded Data") | |
st.write(df) | |
# Ensure the intervention column is determined | |
intervention_column = data_processor.get_intervention_column(df) | |
if intervention_column not in df.columns: | |
st.error(f"Expected column '{intervention_column}' not found.") | |
return | |
# Compute Student Metrics | |
student_metrics_df = data_processor.compute_student_metrics(df) | |
st.subheader("Student Attendance and Engagement") | |
st.write(student_metrics_df) | |
# Compute Student Metric Averages | |
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df) | |
# Plot and download student metrics | |
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats) | |
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png") | |
# Compute Intervention Session Statistics | |
intervention_stats = data_processor.compute_intervention_statistics(df) | |
st.subheader("Intervention Dosage") | |
st.write(intervention_stats) | |
# Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency | |
col1, col2 = st.columns([3, 1]) # Set the column width ratio | |
with col1: | |
intervention_fig = visualization.plot_intervention_statistics(intervention_stats) | |
with col2: | |
intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0] | |
# Display the "Intervention Dosage (%)" text | |
st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True) | |
# Display the frequency value below it | |
st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True) | |
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png") | |
# Evaluate each student and build decision tree diagrams | |
student_metrics_df['Evaluation'] = student_metrics_df.apply( | |
lambda row: data_processor.evaluate_student(row), axis=1 | |
) | |
st.subheader("Student Evaluations") | |
st.write(student_metrics_df[['Student', 'Evaluation']]) | |
# Build and display decision tree diagrams for each student | |
for index, row in student_metrics_df.iterrows(): | |
tree_diagram = visualization.build_tree_diagram(row) | |
# Get the student's name from the DataFrame | |
student_name = row['Student'] | |
# Use st.expander to wrap the graphviz chart with the student's name | |
with st.expander(f"{student_name} Decision Tree", expanded=False): | |
st.graphviz_chart(tree_diagram.source) | |
# Generate Notes and Recommendations using LLM | |
if st.session_state.ai_recommendations is None: | |
with st.spinner("Generating MTSS.ai Analysis..."): | |
llm_input = ai_analysis.prepare_llm_input(student_metrics_df) | |
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input) | |
recommendations = ai_analysis.prompt_response_from_mistral_llm(llm_input) | |
st.session_state.ai_recommendations = recommendations | |
# Display the recommendations | |
st.subheader("MTSS.ai Analysis") | |
# st.markdown(recommendations) | |
st.markdown(st.session_state.ai_recommendations) | |
# Download AI output | |
# ai_analysis.download_llm_output(recommendations, "MTSSai_Report.txt") | |
ai_analysis.download_llm_output(st.session_state.ai_recommendations, "MTSSai_Report.txt") | |
# Generate the PDF Report using the stored recommendations | |
report_gen = ReportGenerator() | |
combined_pdf = report_gen.create_combined_pdf( | |
intervention_fig, | |
student_metrics_fig, | |
st.session_state.ai_recommendations | |
) | |
# Add the download button for the PDF | |
st.download_button( | |
label="Download MTSS.ai Report (PDF)", | |
data=combined_pdf, | |
file_name="MTSSai_LIR_Report.pdf", | |
mime="application/pdf", | |
icon="📄", | |
use_container_width=True | |
) | |
except Exception as e: | |
st.error(f"Error processing the file: {str(e)}") | |
if __name__ == '__main__': | |
main() |