ProfessorLeVesseur's picture
Update app.py
dafd304 verified
raw
history blame
17.3 kB
import streamlit as st
import openai
import random
# Fetch the OpenAI API key from Streamlit secrets
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
# Retrieve the OpenAI API Key from secrets
openai.api_key = st.secrets["OPENAI_API_KEY"]
# # Fetch Pinecone API key and environment from Streamlit secrets
PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"]
# # AUTHENTICATE/INITIALIZE PINCONE SERVICE
from pinecone import Pinecone
# PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6"
pc = Pinecone(api_key=PINECONE_API_KEY)
# # Define the name of the Pinecone index
index_name = 'mimtssinkqa'
# Initialize the OpenAI embeddings object
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
# LOAD VECTOR STORE FROM EXISTING INDEX
from langchain_community.vectorstores import Pinecone
vector_store = Pinecone.from_existing_index(index_name='mimtssinkqa', embedding=embeddings)
def ask_with_memory(vector_store, query, chat_history=[]):
from langchain_openai import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5, openai_api_key=OPENAI_API_KEY)
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
system_template = r'''
Use the following pieces of context to answer the user's question.
The title of the article is Intensifying literacy Instruction: Essential Practices.
Do not mention the Header unless asked.
Your response should be extensive and descriptive, clear, well-structured, and factual that uses paragraphs and bullet points.
Include a summary of your response and then main points at the end of your reponse.
You are an expert literacy coach with extensive knowledge regarding the Simple View of Reading, SWPBIS, and SEL.
Your audience are teachers and administrators.
Article Title: 'Intensifying Literacy Instruction: Essential Practices.'
Instructional Focus: Provide an answer utilizing the context provided. Unless specifically requested by the user, avoid mentioning the article's header or figures.
Knowledge Expertise: Assume the role of an expert literacy coach with in-depth knowledge of the Simple View of Reading, School-Wide Positive Behavioral Interventions and Supports (SWPBIS), and Social Emotional Learning (SEL).
Audience: Tailor your response for teachers and administrators seeking to enhance literacy instruction within their educational settings.
Content Requirements: Your response should be:
Extensive and Descriptive: Cover all necessary details relevant to the question posed, drawing on your expertise in literacy instruction, the Simple View of Reading, SWPBIS, and SEL.
Clear and Well-Structured: Utilize paragraphs for detailed explanations and bullet points for highlighting key points or steps, ensuring the information is easily digestible.
Structure of Response:
Begin with a brief summary of your response to give the reader an overview of what to expect.
Follow with the main body, which should contain the extensive and descriptive content as per the guidelines.
Conclude with a recapitulation of main points, summarizing the essential takeaways from your response.
----------------
Context: ```{context}```
'''
user_template = '''
Question: ```{question}```
Chat History: ```{chat_history}```
'''
messages= [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template(user_template)
]
qa_prompt = ChatPromptTemplate.from_messages (messages)
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory,chain_type='stuff', combine_docs_chain_kwargs={'prompt': qa_prompt}, verbose=False
)
result = chain.invoke({'question': query, 'chat_history': st.session_state['history']})
# Append to chat history as a dictionary
st.session_state['history'].append((query, result['answer']))
return (result['answer'])
# Initialize chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# # STREAMLIT APPLICATION SETUP WITH PASSWORD
# Define the correct password
# correct_password = "MiBLSi"
#Add the image with a specified width
image_width = 300 # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)
st.subheader('Ink QA™ | Dynamic PDFs')
# Using Markdown for formatted text
st.markdown("""
Resource: **Intensifying Literacy Instruction: Essential Practices**
""", unsafe_allow_html=True)
with st.sidebar:
# Password input field
# password = st.text_input("Enter Password:", type="password")
st.image('mimtss.png', width=200)
st.image('Literacy_Cover.png', width=200)
st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
Audio_Header_text = """
**Tune into Dr. St. Martin's introduction**"""
st.markdown(Audio_Header_text)
# Path or URL to the audio file
audio_file_path = 'Audio_Introduction_Literacy.m4a'
# Display the audio player widget
st.audio(audio_file_path, format='audio/mp4', start_time=0)
# Citation text with Markdown formatting
citation_Content_text = """
**Citation**
St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
**Table of Contents**
* **Introduction**: pg. 1
* **Intensifying Literacy Instruction: Essential Practices**: pg. 4
* **Purpose**: pg. 4
* **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
* **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
* **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
* **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
* **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
* **Motivation and Engagement**: pg. 28
* **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
* **Summary**: pg. 29
* **Endnotes**: pg. 30
* **Acknowledgment**: pg. 39
"""
st.markdown(citation_Content_text)
# if password == correct_password:
# Define a list of possible placeholder texts
placeholders = [
'Example: Summarize the article in 200 words or less',
'Example: What are the essential practices?',
'Example: I am a teacher, why is this resource important?',
'Example: How can this resource support my instruction in reading and writing?',
'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
'Example: How does this resource address the needs of students scoring below the 20th percentile?',
'Example: Are there assessment tools included in this resource to monitor student progress?',
'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
"Example: How can this resource be used to support students' social-emotional development?",
"Example: How does this resource align with the district's literacy goals and objectives?",
'Example: What research and evidence support the effectiveness of this resource?',
'Example: Does this resource provide guidance on implementation fidelity'
]
# Select a random placeholder from the list
if 'placeholder' not in st.session_state:
st.session_state.placeholder = random.choice(placeholders)
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# q = st.text_input(label='Ask a question or make a request ', value='')
if q:
with st.spinner('Thinking...'):
answer = ask_with_memory(vector_store, q, st.session_state.history)
# Display the response in a text area
st.text_area('Response: ', value=answer, height=400, key="response_text_area")
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
# Prepare chat history text for display
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
# Prepare chat history text for display in reverse order
history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))
# Display chat history
st.text_area('Chat History', value=history_text, height=800)
# import streamlit as st
# import pinecone
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.vectorstores import Pinecone, Chroma
# from langchain.chains import RetrievalQA
# from langchain.chat_models import ChatOpenAI
# import tiktoken
# import random
# # Fetch the OpenAI API key from Streamlit secrets
# openai_api_key = st.secrets["openai_api_key"]
# # Fetch Pinecone API key and environment from Streamlit secrets
# pinecone_api_key = st.secrets["pinecone_api_key"]
# pinecone_environment = st.secrets["pinecone_environment"]
# # Initialize Pinecone
# pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment)
# # Define the name of the Pinecone index
# index_name = 'mi-resource-qa'
# # Initialize the OpenAI embeddings object with the hardcoded API key
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# # Define functions
# def insert_or_fetch_embeddings(index_name):
# if index_name in pinecone.list_indexes():
# vector_store = Pinecone.from_existing_index(index_name, embeddings)
# return vector_store
# else:
# raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")
# # Initialize or fetch Pinecone vector store
# vector_store = insert_or_fetch_embeddings(index_name)
# # calculate embedding cost using tiktoken
# def calculate_embedding_cost(text):
# import tiktoken
# enc = tiktoken.encoding_for_model('text-embedding-ada-002')
# total_tokens = len(enc.encode(text))
# # print(f'Total Tokens: {total_tokens}')
# # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
# return total_tokens, total_tokens / 1000 * 0.0004
# def ask_with_memory(vector_store, query, chat_history=[]):
# from langchain.chains import ConversationalRetrievalChain
# from langchain.chat_models import ChatOpenAI
# llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key)
# # The retriever is created with metadata filter directly in search_kwargs
# # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}})
# retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}})
# chain= ConversationalRetrievalChain.from_llm(llm, retriever)
# result = chain({'question': query, 'chat_history': st.session_state['history']})
# # Append to chat history as a dictionary
# st.session_state['history'].append((query, result['answer']))
# return (result['answer'])
# # Initialize chat history
# if 'history' not in st.session_state:
# st.session_state['history'] = []
# # # STREAMLIT APPLICATION SETUP WITH PASSWORD
# # Define the correct password
# # correct_password = "MiBLSi"
# #Add the image with a specified width
# image_width = 300 # Set the desired width in pixels
# st.image('MTSS.ai_Logo.png', width=image_width)
# st.subheader('Ink QA™ | Dynamic PDFs')
# # Using Markdown for formatted text
# st.markdown("""
# Resource: **Intensifying Literacy Instruction: Essential Practices**
# """, unsafe_allow_html=True)
# with st.sidebar:
# # Password input field
# # password = st.text_input("Enter Password:", type="password")
# st.image('mimtss.png', width=200)
# st.image('Literacy_Cover.png', width=200)
# st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
# Audio_Header_text = """
# **Tune into Dr. St. Martin's introduction**"""
# st.markdown(Audio_Header_text)
# # Path or URL to the audio file
# audio_file_path = 'Audio_Introduction_Literacy.m4a'
# # Display the audio player widget
# st.audio(audio_file_path, format='audio/mp4', start_time=0)
# # Citation text with Markdown formatting
# citation_Content_text = """
# **Citation**
# St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
# **Table of Contents**
# * **Introduction**: pg. 1
# * **Intensifying Literacy Instruction: Essential Practices**: pg. 4
# * **Purpose**: pg. 4
# * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
# * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
# * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
# * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
# * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
# * **Motivation and Engagement**: pg. 28
# * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
# * **Summary**: pg. 29
# * **Endnotes**: pg. 30
# * **Acknowledgment**: pg. 39
# """
# st.markdown(citation_Content_text)
# # if password == correct_password:
# # Define a list of possible placeholder texts
# placeholders = [
# 'Example: Summarize the article in 200 words or less',
# 'Example: What are the essential practices?',
# 'Example: I am a teacher, why is this resource important?',
# 'Example: How can this resource support my instruction in reading and writing?',
# 'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
# 'Example: How does this resource address the needs of students scoring below the 20th percentile?',
# 'Example: Are there assessment tools included in this resource to monitor student progress?',
# 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
# "Example: How can this resource be used to support students' social-emotional development?",
# "Example: How does this resource align with the district's literacy goals and objectives?",
# 'Example: What research and evidence support the effectiveness of this resource?',
# 'Example: Does this resource provide guidance on implementation fidelity'
# ]
# # Select a random placeholder from the list
# if 'placeholder' not in st.session_state:
# st.session_state.placeholder = random.choice(placeholders)
# q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# # q = st.text_input(label='Ask a question or make a request ', value='')
# k = 3 # Set k to 3
# # # Initialize chat history if not present
# # if 'history' not in st.session_state:
# # st.session_state.history = []
# if q:
# with st.spinner('Thinking...'):
# answer = ask_with_memory(vector_store, q, st.session_state.history)
# # Display the response in a text area
# st.text_area('Response: ', value=answer, height=400, key="response_text_area")
# st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
# # # Prepare chat history text for display
# # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
# # Prepare chat history text for display in reverse order
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))
# # Display chat history
# st.text_area('Chat History', value=history_text, height=800)