Update data_processor.py
Browse files- data_processor.py +1 -184
data_processor.py
CHANGED
|
@@ -1,172 +1,3 @@
|
|
| 1 |
-
# import pandas as pd
|
| 2 |
-
# import os
|
| 3 |
-
# import re
|
| 4 |
-
# from huggingface_hub import InferenceClient
|
| 5 |
-
|
| 6 |
-
# class DataProcessor:
|
| 7 |
-
# INTERVENTION_COLUMN = 'Did the intervention happen today?'
|
| 8 |
-
# ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
|
| 9 |
-
# PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
|
| 10 |
-
# NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
|
| 11 |
-
|
| 12 |
-
# def __init__(self):
|
| 13 |
-
# self.hf_api_key = os.getenv('HF_API_KEY')
|
| 14 |
-
# if not self.hf_api_key:
|
| 15 |
-
# raise ValueError("HF_API_KEY not set in environment variables")
|
| 16 |
-
# self.client = InferenceClient(api_key=self.hf_api_key)
|
| 17 |
-
|
| 18 |
-
# def read_excel(self, uploaded_file):
|
| 19 |
-
# return pd.read_excel(uploaded_file)
|
| 20 |
-
|
| 21 |
-
# def format_session_data(self, df):
|
| 22 |
-
# df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
|
| 23 |
-
# df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
|
| 24 |
-
# df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
| 25 |
-
# df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
| 26 |
-
# df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
|
| 27 |
-
# return df
|
| 28 |
-
|
| 29 |
-
# def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
| 30 |
-
# try:
|
| 31 |
-
# converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
|
| 32 |
-
# if format_str:
|
| 33 |
-
# return converted.dt.strftime(format_str)
|
| 34 |
-
# return converted
|
| 35 |
-
# except Exception as e:
|
| 36 |
-
# print(f"Error converting series to time: {e}")
|
| 37 |
-
# return series
|
| 38 |
-
|
| 39 |
-
# def safe_convert_to_datetime(self, series, format_str=None):
|
| 40 |
-
# try:
|
| 41 |
-
# converted = pd.to_datetime(series, errors='coerce')
|
| 42 |
-
# if format_str:
|
| 43 |
-
# return converted.dt.strftime(format_str)
|
| 44 |
-
# return converted
|
| 45 |
-
# except Exception as e:
|
| 46 |
-
# print(f"Error converting series to datetime: {e}")
|
| 47 |
-
# return series
|
| 48 |
-
|
| 49 |
-
# def replace_student_names_with_initials(self, df):
|
| 50 |
-
# updated_columns = []
|
| 51 |
-
# for col in df.columns:
|
| 52 |
-
# if col.startswith('Student Attendance'):
|
| 53 |
-
# match = re.match(r'Student Attendance \[(.+?)\]', col)
|
| 54 |
-
# if match:
|
| 55 |
-
# name = match.group(1)
|
| 56 |
-
# name_parts = name.split()
|
| 57 |
-
# if len(name_parts) == 1:
|
| 58 |
-
# initials = name_parts[0][0]
|
| 59 |
-
# else:
|
| 60 |
-
# initials = ''.join([part[0] for part in name_parts])
|
| 61 |
-
# updated_columns.append(f'Student Attendance [{initials}]')
|
| 62 |
-
# else:
|
| 63 |
-
# updated_columns.append(col)
|
| 64 |
-
# else:
|
| 65 |
-
# updated_columns.append(col)
|
| 66 |
-
# df.columns = updated_columns
|
| 67 |
-
# return df
|
| 68 |
-
|
| 69 |
-
# def compute_intervention_statistics(self, df):
|
| 70 |
-
# total_days = len(df)
|
| 71 |
-
# sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
|
| 72 |
-
# sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
|
| 73 |
-
# intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
|
| 74 |
-
# intervention_frequency = round(intervention_frequency, 0)
|
| 75 |
-
|
| 76 |
-
# stats = {
|
| 77 |
-
# 'Intervention Frequency (%)': [intervention_frequency],
|
| 78 |
-
# 'Intervention Sessions Held': [sessions_held],
|
| 79 |
-
# 'Intervention Sessions Not Held': [sessions_not_held],
|
| 80 |
-
# 'Total Number of Days Available': [total_days]
|
| 81 |
-
# }
|
| 82 |
-
# return pd.DataFrame(stats)
|
| 83 |
-
|
| 84 |
-
# def compute_student_metrics(self, df):
|
| 85 |
-
# intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
|
| 86 |
-
# intervention_sessions_held = len(intervention_df)
|
| 87 |
-
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
| 88 |
-
|
| 89 |
-
# student_metrics = {}
|
| 90 |
-
# for col in student_columns:
|
| 91 |
-
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
| 92 |
-
# student_data = intervention_df[[col]].copy()
|
| 93 |
-
# student_data[col] = student_data[col].fillna('Absent')
|
| 94 |
-
|
| 95 |
-
# attendance_values = student_data[col].apply(lambda x: 1 if x in [
|
| 96 |
-
# self.ENGAGED_STR,
|
| 97 |
-
# self.PARTIALLY_ENGAGED_STR,
|
| 98 |
-
# self.NOT_ENGAGED_STR
|
| 99 |
-
# ] else 0)
|
| 100 |
-
|
| 101 |
-
# sessions_attended = attendance_values.sum()
|
| 102 |
-
# attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
|
| 103 |
-
# attendance_pct = round(attendance_pct)
|
| 104 |
-
|
| 105 |
-
# engagement_counts = {
|
| 106 |
-
# 'Engaged': 0,
|
| 107 |
-
# 'Partially Engaged': 0,
|
| 108 |
-
# 'Not Engaged': 0,
|
| 109 |
-
# 'Absent': 0
|
| 110 |
-
# }
|
| 111 |
-
|
| 112 |
-
# for x in student_data[col]:
|
| 113 |
-
# if x == self.ENGAGED_STR:
|
| 114 |
-
# engagement_counts['Engaged'] += 1
|
| 115 |
-
# elif x == self.PARTIALLY_ENGAGED_STR:
|
| 116 |
-
# engagement_counts['Partially Engaged'] += 1
|
| 117 |
-
# elif x == self.NOT_ENGAGED_STR:
|
| 118 |
-
# engagement_counts['Not Engaged'] += 1
|
| 119 |
-
# else:
|
| 120 |
-
# engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
| 121 |
-
|
| 122 |
-
# # Calculate percentages for engagement states
|
| 123 |
-
# total_sessions = sum(engagement_counts.values())
|
| 124 |
-
|
| 125 |
-
# # Engagement (%)
|
| 126 |
-
# engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
| 127 |
-
# engagement_pct = round(engagement_pct)
|
| 128 |
-
|
| 129 |
-
# engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
| 130 |
-
# engaged_pct = round(engaged_pct)
|
| 131 |
-
|
| 132 |
-
# partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
| 133 |
-
# partially_engaged_pct = round(partially_engaged_pct)
|
| 134 |
-
|
| 135 |
-
# not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
|
| 136 |
-
# not_engaged_pct = round(not_engaged_pct)
|
| 137 |
-
|
| 138 |
-
# absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
| 139 |
-
# absent_pct = round(absent_pct)
|
| 140 |
-
|
| 141 |
-
# # Store metrics in the required order
|
| 142 |
-
# student_metrics[student_name] = {
|
| 143 |
-
# 'Attendance (%)': attendance_pct,
|
| 144 |
-
# 'Attendance #': sessions_attended, # Raw number of sessions attended
|
| 145 |
-
# 'Engagement (%)': engagement_pct,
|
| 146 |
-
# 'Engaged (%)': engaged_pct,
|
| 147 |
-
# 'Partially Engaged (%)': partially_engaged_pct,
|
| 148 |
-
# 'Not Engaged (%)': not_engaged_pct,
|
| 149 |
-
# 'Absent (%)': absent_pct
|
| 150 |
-
# }
|
| 151 |
-
|
| 152 |
-
# # Create a DataFrame from student_metrics
|
| 153 |
-
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
| 154 |
-
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
| 155 |
-
# return student_metrics_df
|
| 156 |
-
|
| 157 |
-
# def compute_average_metrics(self, student_metrics_df):
|
| 158 |
-
# # Calculate the attendance and engagement average percentages across students
|
| 159 |
-
# attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
|
| 160 |
-
# engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Calculate the average engagement percentage
|
| 161 |
-
|
| 162 |
-
# # Round the averages to make them whole numbers
|
| 163 |
-
# attendance_avg_stats = round(attendance_avg_stats)
|
| 164 |
-
# engagement_avg_stats = round(engagement_avg_stats)
|
| 165 |
-
|
| 166 |
-
# return attendance_avg_stats, engagement_avg_stats
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
import pandas as pd
|
| 171 |
import os
|
| 172 |
import re
|
|
@@ -340,18 +171,4 @@ class DataProcessor:
|
|
| 340 |
return "Address Attendance"
|
| 341 |
elif row["Engagement ≥ 80%"] == "No":
|
| 342 |
return "Address Engagement"
|
| 343 |
-
return "Consider addressing logistical barriers, improving fidelity, and/or collecting progress monitoring data"
|
| 344 |
-
|
| 345 |
-
# def build_tree_diagram(self, row):
|
| 346 |
-
# dot = Digraph()
|
| 347 |
-
# dot.node("Q1", "Has the student attended ≥ 90% of interventions?")
|
| 348 |
-
# dot.node("Q2", "Has the student been engaged ≥ 80% of intervention time?")
|
| 349 |
-
# dot.node("A1", "Address Attendance", shape="box")
|
| 350 |
-
# dot.node("A2", "Address Engagement", shape="box")
|
| 351 |
-
# dot.node("A3", "Consider addressing logistical barriers", shape="box")
|
| 352 |
-
# if row["Attended ≥ 90%"] == "No":
|
| 353 |
-
# dot.edge("Q1", "A1", label="No")
|
| 354 |
-
# else:
|
| 355 |
-
# dot.edge("Q1", "Q2", label="Yes")
|
| 356 |
-
# dot.edge("Q2", "A2" if row["Engagement ≥ 80%"] == "No" else "A3", label="Yes")
|
| 357 |
-
# return dot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import os
|
| 3 |
import re
|
|
|
|
| 171 |
return "Address Attendance"
|
| 172 |
elif row["Engagement ≥ 80%"] == "No":
|
| 173 |
return "Address Engagement"
|
| 174 |
+
return "Consider addressing logistical barriers, improving fidelity, and/or collecting progress monitoring data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|