Update data_processor.py
Browse files- data_processor.py +20 -234
data_processor.py
CHANGED
|
@@ -1,235 +1,3 @@
|
|
| 1 |
-
# import re
|
| 2 |
-
# import pandas as pd
|
| 3 |
-
# import os
|
| 4 |
-
# from huggingface_hub import InferenceClient
|
| 5 |
-
|
| 6 |
-
# class DataProcessor:
|
| 7 |
-
# INTERVENTION_COLUMN_OPTIONS = [
|
| 8 |
-
# 'Did the intervention happen today?',
|
| 9 |
-
# 'Did the intervention take place today?'
|
| 10 |
-
# ]
|
| 11 |
-
# YES_RESPONSES = ['yes', 'assessment day'] # Added this line
|
| 12 |
-
# ENGAGED_STR = 'Engaged'
|
| 13 |
-
# PARTIALLY_ENGAGED_STR = 'Partially Engaged'
|
| 14 |
-
# NOT_ENGAGED_STR = 'Not Engaged'
|
| 15 |
-
|
| 16 |
-
# def __init__(self, student_metrics_df=None):
|
| 17 |
-
# self.hf_api_key = os.getenv('HF_API_KEY')
|
| 18 |
-
# if not self.hf_api_key:
|
| 19 |
-
# raise ValueError("HF_API_KEY not set in environment variables")
|
| 20 |
-
# self.client = InferenceClient(api_key=self.hf_api_key)
|
| 21 |
-
# self.student_metrics_df = student_metrics_df
|
| 22 |
-
# self.intervention_column = None # Will be set when processing data
|
| 23 |
-
|
| 24 |
-
# def read_excel(self, uploaded_file):
|
| 25 |
-
# return pd.read_excel(uploaded_file)
|
| 26 |
-
|
| 27 |
-
# def format_session_data(self, df):
|
| 28 |
-
# date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
| 29 |
-
# if date_column:
|
| 30 |
-
# df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
|
| 31 |
-
# else:
|
| 32 |
-
# print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.")
|
| 33 |
-
|
| 34 |
-
# df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
|
| 35 |
-
# df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
|
| 36 |
-
# df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
|
| 37 |
-
# return df
|
| 38 |
-
|
| 39 |
-
# def safe_convert_to_time(self, series, format_str='%I:%M %p'):
|
| 40 |
-
# try:
|
| 41 |
-
# converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
|
| 42 |
-
# if format_str:
|
| 43 |
-
# return converted.dt.strftime(format_str)
|
| 44 |
-
# return converted
|
| 45 |
-
# except Exception as e:
|
| 46 |
-
# print(f"Error converting series to time: {e}")
|
| 47 |
-
# return series
|
| 48 |
-
|
| 49 |
-
# def safe_convert_to_datetime(self, series, format_str=None):
|
| 50 |
-
# try:
|
| 51 |
-
# converted = pd.to_datetime(series, errors='coerce')
|
| 52 |
-
# if format_str:
|
| 53 |
-
# return converted.dt.strftime(format_str)
|
| 54 |
-
# return converted
|
| 55 |
-
# except Exception as e:
|
| 56 |
-
# print(f"Error converting series to datetime: {e}")
|
| 57 |
-
# return series
|
| 58 |
-
|
| 59 |
-
# def replace_student_names_with_initials(self, df):
|
| 60 |
-
# updated_columns = []
|
| 61 |
-
# for col in df.columns:
|
| 62 |
-
# if 'Student Attendance' in col:
|
| 63 |
-
# # Search for the last occurrence of text within square brackets at the end of the string
|
| 64 |
-
# match = re.search(r'\[(.+?)\]$', col)
|
| 65 |
-
# if not match:
|
| 66 |
-
# # Handle cases where the closing bracket might be missing
|
| 67 |
-
# match = re.search(r'\[(.+)$', col)
|
| 68 |
-
# if match:
|
| 69 |
-
# name = match.group(1).strip()
|
| 70 |
-
# # Remove any trailing closing bracket if it wasn't matched earlier
|
| 71 |
-
# name = name.rstrip(']')
|
| 72 |
-
# # Get initials
|
| 73 |
-
# initials = ''.join([part[0] for part in name.strip().split()])
|
| 74 |
-
# updated_col = f'Student Attendance [{initials}]'
|
| 75 |
-
# updated_columns.append(updated_col)
|
| 76 |
-
# else:
|
| 77 |
-
# # If no match is found, keep the column name as is
|
| 78 |
-
# updated_columns.append(col)
|
| 79 |
-
# else:
|
| 80 |
-
# updated_columns.append(col)
|
| 81 |
-
# df.columns = updated_columns
|
| 82 |
-
# return df
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# def find_intervention_column(self, df):
|
| 86 |
-
# for column in self.INTERVENTION_COLUMN_OPTIONS:
|
| 87 |
-
# if column in df.columns:
|
| 88 |
-
# self.intervention_column = column
|
| 89 |
-
# return column
|
| 90 |
-
# raise ValueError("No intervention column found in the dataframe.")
|
| 91 |
-
|
| 92 |
-
# def get_intervention_column(self, df):
|
| 93 |
-
# if self.intervention_column is None:
|
| 94 |
-
# self.intervention_column = self.find_intervention_column(df)
|
| 95 |
-
# return self.intervention_column
|
| 96 |
-
|
| 97 |
-
# def compute_intervention_statistics(self, df):
|
| 98 |
-
# intervention_column = self.get_intervention_column(df)
|
| 99 |
-
# total_days = len(df)
|
| 100 |
-
# sessions_held = df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES).sum() # Modified line
|
| 101 |
-
# intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
|
| 102 |
-
# return pd.DataFrame({
|
| 103 |
-
# 'Intervention Dosage (%)': [round(intervention_frequency, 0)],
|
| 104 |
-
# 'Intervention Sessions Held': [sessions_held],
|
| 105 |
-
# 'Intervention Sessions Not Held': [total_days - sessions_held],
|
| 106 |
-
# 'Total Number of Days Available': [total_days]
|
| 107 |
-
# })
|
| 108 |
-
|
| 109 |
-
# def classify_engagement(self, engagement_str):
|
| 110 |
-
# engagement_str = str(engagement_str).lower()
|
| 111 |
-
# if engagement_str.startswith(self.ENGAGED_STR.lower()):
|
| 112 |
-
# return self.ENGAGED_STR
|
| 113 |
-
# elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
|
| 114 |
-
# return self.PARTIALLY_ENGAGED_STR
|
| 115 |
-
# elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()):
|
| 116 |
-
# return self.NOT_ENGAGED_STR
|
| 117 |
-
# else:
|
| 118 |
-
# return 'Unknown'
|
| 119 |
-
|
| 120 |
-
# def compute_student_metrics(self, df):
|
| 121 |
-
# intervention_column = self.get_intervention_column(df)
|
| 122 |
-
# intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)]
|
| 123 |
-
# intervention_sessions_held = len(intervention_df)
|
| 124 |
-
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
| 125 |
-
|
| 126 |
-
# student_metrics = {}
|
| 127 |
-
# for col in student_columns:
|
| 128 |
-
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
| 129 |
-
# student_data = intervention_df[[col]].copy()
|
| 130 |
-
# student_data[col] = student_data[col].fillna('Absent')
|
| 131 |
-
|
| 132 |
-
# # Classify each entry
|
| 133 |
-
# student_data['Engagement'] = student_data[col].apply(self.classify_engagement)
|
| 134 |
-
|
| 135 |
-
# # Calculate attendance
|
| 136 |
-
# attendance_values = student_data['Engagement'].apply(
|
| 137 |
-
# lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0
|
| 138 |
-
# )
|
| 139 |
-
|
| 140 |
-
# sessions_attended = attendance_values.sum()
|
| 141 |
-
# attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
| 142 |
-
# attendance_pct = round(attendance_pct)
|
| 143 |
-
|
| 144 |
-
# # Engagement counts (excluding 'Absent')
|
| 145 |
-
# engagement_counts = {
|
| 146 |
-
# self.ENGAGED_STR: 0,
|
| 147 |
-
# self.PARTIALLY_ENGAGED_STR: 0,
|
| 148 |
-
# self.NOT_ENGAGED_STR: 0
|
| 149 |
-
# }
|
| 150 |
-
|
| 151 |
-
# # Count the engagement types, excluding 'Absent'
|
| 152 |
-
# for x in student_data['Engagement']:
|
| 153 |
-
# if x in engagement_counts:
|
| 154 |
-
# engagement_counts[x] += 1
|
| 155 |
-
# # 'Absent' is not counted in engagement_counts
|
| 156 |
-
|
| 157 |
-
# total_present_sessions = sum(engagement_counts.values())
|
| 158 |
-
|
| 159 |
-
# engaged_pct = (
|
| 160 |
-
# (engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100)
|
| 161 |
-
# if total_present_sessions > 0 else 0
|
| 162 |
-
# )
|
| 163 |
-
# engaged_pct = round(engaged_pct)
|
| 164 |
-
|
| 165 |
-
# partially_engaged_pct = (
|
| 166 |
-
# (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100)
|
| 167 |
-
# if total_present_sessions > 0 else 0
|
| 168 |
-
# )
|
| 169 |
-
# partially_engaged_pct = round(partially_engaged_pct)
|
| 170 |
-
|
| 171 |
-
# not_engaged_pct = (
|
| 172 |
-
# (engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100)
|
| 173 |
-
# if total_present_sessions > 0 else 0
|
| 174 |
-
# )
|
| 175 |
-
# not_engaged_pct = round(not_engaged_pct)
|
| 176 |
-
|
| 177 |
-
# # Engagement percentage is based on Engaged and Partially Engaged sessions
|
| 178 |
-
# engagement_pct = (
|
| 179 |
-
# ((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100)
|
| 180 |
-
# if total_present_sessions > 0 else 0
|
| 181 |
-
# )
|
| 182 |
-
# engagement_pct = round(engagement_pct)
|
| 183 |
-
|
| 184 |
-
# # Absent percentage (for reference, not used in engagement calculation)
|
| 185 |
-
# absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0)
|
| 186 |
-
# absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
|
| 187 |
-
# absent_pct = round(absent_pct)
|
| 188 |
-
|
| 189 |
-
# # Determine if the student attended ≥ 90% of sessions
|
| 190 |
-
# attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
| 191 |
-
|
| 192 |
-
# # Determine if the student was engaged ≥ 80% of the time
|
| 193 |
-
# engaged_80 = "Yes" if engagement_pct >= 80 else "No"
|
| 194 |
-
|
| 195 |
-
# # Store metrics
|
| 196 |
-
# student_metrics[student_name] = {
|
| 197 |
-
# 'Attended ≥ 90%': attended_90,
|
| 198 |
-
# 'Engagement ≥ 80%': engaged_80,
|
| 199 |
-
# 'Attendance (%)': attendance_pct,
|
| 200 |
-
# 'Engagement (%)': engagement_pct,
|
| 201 |
-
# f'{self.ENGAGED_STR} (%)': engaged_pct,
|
| 202 |
-
# f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
|
| 203 |
-
# f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
|
| 204 |
-
# 'Absent (%)': absent_pct
|
| 205 |
-
# }
|
| 206 |
-
|
| 207 |
-
# # Create a DataFrame from student_metrics
|
| 208 |
-
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
| 209 |
-
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
| 210 |
-
# return student_metrics_df
|
| 211 |
-
|
| 212 |
-
# def compute_average_metrics(self, student_metrics_df):
|
| 213 |
-
# # Calculate the attendance and engagement average percentages across students
|
| 214 |
-
# attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage
|
| 215 |
-
# engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Average engagement percentage
|
| 216 |
-
|
| 217 |
-
# # Round the averages to whole numbers
|
| 218 |
-
# attendance_avg_stats = round(attendance_avg_stats)
|
| 219 |
-
# engagement_avg_stats = round(engagement_avg_stats)
|
| 220 |
-
|
| 221 |
-
# return attendance_avg_stats, engagement_avg_stats
|
| 222 |
-
|
| 223 |
-
# def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80):
|
| 224 |
-
# if row["Attended ≥ 90%"] == "No":
|
| 225 |
-
# return "Address Attendance"
|
| 226 |
-
# elif row["Engagement ≥ 80%"] == "No":
|
| 227 |
-
# return "Address Engagement"
|
| 228 |
-
# else:
|
| 229 |
-
# return "Consider barriers, fidelity, and progress monitoring"
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
import re
|
| 234 |
import pandas as pd
|
| 235 |
import os
|
|
@@ -457,14 +225,32 @@ class DataProcessor:
|
|
| 457 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
| 458 |
return student_metrics_df
|
| 459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
def compute_average_metrics(self, student_metrics_df):
|
| 461 |
# Filter out rows with NaN values (inactive students)
|
| 462 |
active_students_df = student_metrics_df.dropna()
|
| 463 |
|
| 464 |
-
# Calculate the attendance
|
| 465 |
attendance_avg_stats = active_students_df['Attendance (%)'].mean()
|
| 466 |
-
engagement_avg_stats = active_students_df[f'{self.ENGAGED_STR} (%)'].mean()
|
| 467 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
# Round the averages to whole numbers
|
| 469 |
attendance_avg_stats = round(attendance_avg_stats)
|
| 470 |
engagement_avg_stats = round(engagement_avg_stats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
|
|
| 225 |
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
| 226 |
return student_metrics_df
|
| 227 |
|
| 228 |
+
# def compute_average_metrics(self, student_metrics_df):
|
| 229 |
+
# # Filter out rows with NaN values (inactive students)
|
| 230 |
+
# active_students_df = student_metrics_df.dropna()
|
| 231 |
+
|
| 232 |
+
# # Calculate the attendance and engagement average percentages across active students
|
| 233 |
+
# attendance_avg_stats = active_students_df['Attendance (%)'].mean()
|
| 234 |
+
# engagement_avg_stats = active_students_df[f'{self.ENGAGED_STR} (%)'].mean()
|
| 235 |
+
|
| 236 |
+
# # Round the averages to whole numbers
|
| 237 |
+
# attendance_avg_stats = round(attendance_avg_stats)
|
| 238 |
+
# engagement_avg_stats = round(engagement_avg_stats)
|
| 239 |
+
|
| 240 |
+
# return attendance_avg_stats, engagement_avg_stats
|
| 241 |
+
|
| 242 |
def compute_average_metrics(self, student_metrics_df):
|
| 243 |
# Filter out rows with NaN values (inactive students)
|
| 244 |
active_students_df = student_metrics_df.dropna()
|
| 245 |
|
| 246 |
+
# Calculate the attendance average percentage across active students
|
| 247 |
attendance_avg_stats = active_students_df['Attendance (%)'].mean()
|
|
|
|
| 248 |
|
| 249 |
+
# Calculate the engagement average percentage across active students
|
| 250 |
+
# Only consider 'Engaged' and 'Partially Engaged' percentages, exclude 'Absent'
|
| 251 |
+
total_engagement = active_students_df[f'{self.ENGAGED_STR} (%)'] + active_students_df[f'{self.PARTIALLY_ENGAGED_STR} (%)']
|
| 252 |
+
engagement_avg_stats = total_engagement.mean()
|
| 253 |
+
|
| 254 |
# Round the averages to whole numbers
|
| 255 |
attendance_avg_stats = round(attendance_avg_stats)
|
| 256 |
engagement_avg_stats = round(engagement_avg_stats)
|