File size: 8,077 Bytes
648dea1
 
 
 
 
 
 
 
 
 
 
56f8447
 
 
 
648dea1
39b1f14
 
 
 
 
 
 
 
 
 
 
 
 
d03227a
39b1f14
 
 
 
 
 
cce5718
648dea1
 
 
 
 
 
 
 
 
 
 
 
 
 
39b1f14
 
648dea1
 
39b1f14
 
 
648dea1
39b1f14
648dea1
 
 
39b1f14
648dea1
 
 
 
39b1f14
 
 
 
 
 
 
648dea1
 
39b1f14
648dea1
 
 
 
 
39b1f14
648dea1
39b1f14
 
 
648dea1
 
39b1f14
648dea1
 
 
56f8447
 
 
39b1f14
56f8447
 
648dea1
56f8447
648dea1
d03227a
648dea1
 
39b1f14
d03227a
39b1f14
 
 
648dea1
 
 
56f8447
39b1f14
56f8447
39b1f14
d03227a
39b1f14
56f8447
648dea1
 
39b1f14
648dea1
39b1f14
 
 
 
 
 
 
 
 
 
 
 
 
648dea1
39b1f14
648dea1
 
 
 
39b1f14
 
 
 
 
 
 
648dea1
39b1f14
 
 
648dea1
 
39b1f14
648dea1
 
 
39b1f14
 
 
648dea1
 
 
 
 
 
 
39b1f14
 
648dea1
39b1f14
 
648dea1
39b1f14
 
648dea1
39b1f14
 
 
648dea1
 
39b1f14
 
 
 
 
 
56f8447
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz  # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch

# ---------------------------------------------------------------------------------------
# Streamlit Page Configuration
# ---------------------------------------------------------------------------------------
st.set_page_config(
    page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
    page_icon=":bar_chart:",
    layout="centered",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'About': "This app is built to support PDF analysis"
    }
)

# ---------------------------------------------------------------------------------------
# Session State Initialization
# ---------------------------------------------------------------------------------------
for key in ['pdf_processed', 'markdown_texts', 'df']:
    if key not in st.session_state:
        st.session_state[key] = False if key == 'pdf_processed' else []

# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
headers = {
    'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
    'Content-Type': 'application/json'
}

# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class SurveyAnalysis:
    def prepare_llm_input(self, survey_response, topics):
        topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
        return f"""Extract and summarize PDF notes based on topics:
{topic_descriptions}

Instructions:
- Extract exact quotes per topic.
- Ignore irrelevant topics.

Format:
[Topic]
- "Exact quote"

Meeting Notes:
{survey_response}
"""

    def query_api(self, payload):
        try:
            res = requests.post(API_URL, headers=headers, json=payload, timeout=60)
            res.raise_for_status()
            return res.json()
        except requests.exceptions.RequestException as e:
            st.error(f"API request failed: {e}")
            return {'outputs': {'out-0': ''}}

    def extract_meeting_notes(self, response):
        return response.get('outputs', {}).get('out-0', '')

    def process_dataframe(self, df, topics):
        results = []
        for _, row in df.iterrows():
            llm_input = self.prepare_llm_input(row['Document_Text'], topics)
            payload = {"user_id": "user", "in-0": llm_input}
            response = self.query_api(payload)
            notes = self.extract_meeting_notes(response)
            results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
        return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)

# ---------------------------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------------------------
@st.cache_resource
def load_smol_docling():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
    model = AutoModelForVision2Seq.from_pretrained(
        "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
    ).to(device)
    return model, processor

model, processor = load_smol_docling()

def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
    images = []
    doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
    for page in doc:
        pix = page.get_pixmap(dpi=dpi)
        img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
        img.thumbnail((max_size, max_size), Image.LANCZOS)
        images.append(img)
    return images

def extract_markdown_from_image(image):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
    with torch.no_grad():
        generated_ids = model.generate(**inputs, max_new_tokens=1024)
    doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
    doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
    doc = DoclingDocument(name="ExtractedDocument")
    doc.load_from_doctags(doctags_doc)
    return doc.export_to_markdown()

def extract_excerpts(processed_df):
    rows = []
    for _, r in processed_df.iterrows():
        for sec in re.split(r'\n(?=\[)', r['Topic_Summary']):
            topic_match = re.match(r'\[([^\]]+)\]', sec)
            if topic_match:
                topic = topic_match.group(1)
                excerpts = re.findall(r'- "([^"]+)"', sec)
                for excerpt in excerpts:
                    rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic})
    return pd.DataFrame(rows)

# ---------------------------------------------------------------------------------------
# Streamlit UI
# ---------------------------------------------------------------------------------------
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")

uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

if uploaded_file and not st.session_state['pdf_processed']:
    with st.spinner("Processing PDF..."):
        images = convert_pdf_to_images(uploaded_file)
        markdown_texts = [extract_markdown_from_image(img) for img in images]
        st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
        st.session_state['pdf_processed'] = True
    st.success("PDF processed successfully!")

if st.session_state['pdf_processed']:
    st.markdown("### Extracted Text Preview")
    st.write(st.session_state['df'].head())

    st.markdown("### Enter Topics and Descriptions")
    num_topics = st.number_input("Number of topics", 1, 10, 1)
    topics = {}
    for i in range(num_topics):
        topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
        desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
        if topic and desc:
            topics[topic] = desc

    if st.button("Run Analysis"):
        if not topics:
            st.warning("Please enter at least one topic and description.")
            st.stop()

        analyzer = SurveyAnalysis()
        processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
        extracted_df = extract_excerpts(processed_df)

        st.markdown("### Extracted Excerpts")
        st.dataframe(extracted_df)

        csv = extracted_df.to_csv(index=False)
        st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")

        topic_counts = extracted_df['Topic'].value_counts()
        fig, ax = plt.subplots()
        topic_counts.plot.bar(ax=ax, color='#3d9aa1')
        st.pyplot(fig)

if st.button("Reset / Upload New PDF"):
    for key in ['pdf_processed', 'markdown_texts', 'df']:
        st.session_state[key] = False if key == 'pdf_processed' else []
    st.experimental_rerun()

if not uploaded_file:
    st.info("Please upload a PDF file to begin.")