File size: 23,598 Bytes
56f8447 648dea1 56f8447 648dea1 f6f8448 648dea1 f6f8448 648dea1 f6f8448 648dea1 f6f8448 648dea1 c654aff 648dea1 56f8447 648dea1 56f8447 648dea1 56f8447 648dea1 56f8447 648dea1 56f8447 648dea1 56f8447 648dea1 56f8447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
# # ---------------------------------------------------------------------------------------
# # Imports and Options
# # ---------------------------------------------------------------------------------------
# import streamlit as st
# import pandas as pd
# import requests
# import re
# import fitz # PyMuPDF
# import io
# import matplotlib.pyplot as plt
# from PIL import Image
# from mlx_vlm import load, generate
# from mlx_vlm.prompt_utils import apply_chat_template
# from mlx_vlm.utils import load_config, stream_generate
# from docling_core.types.doc.document import DocTagsDocument, DoclingDocument
# # Set Streamlit to wide mode
# # st.set_page_config(layout="wide")
# # ---------------------------------------------------------------------------------------
# # API Configuration
# # ---------------------------------------------------------------------------------------
# API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
# headers = {
# 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
# 'Content-Type': 'application/json'
# }
# # ---------------------------------------------------------------------------------------
# # Survey Analysis Class
# # ---------------------------------------------------------------------------------------
# class SurveyAnalysis:
# def __init__(self, api_key=None):
# self.api_key = api_key
# def prepare_llm_input(self, survey_response, topics):
# # Create topic description string from user input
# topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
# llm_input = f"""
# Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
# {topic_descriptions}
# **Instructions:**
# - Extract and summarize the PDF focusing only on the provided topics.
# - If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
# - Use **exact quotes** from the original text for each point in your Topic_Summary.
# - Exclude erroneous content.
# - Do not add additional explanations or instructions.
# **Format your response as follows:**
# [Topic]
# - "Exact quote"
# - "Exact quote"
# - "Exact quote"
# **Meeting Notes:**
# {survey_response}
# """
# return llm_input
# def query_api(self, payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# def extract_meeting_notes(self, response):
# output = response.get('outputs', {}).get('out-0', '')
# return output
# def process_dataframe(self, df, topics):
# results = []
# for _, row in df.iterrows():
# llm_input = self.prepare_llm_input(row['Document_Text'], topics)
# payload = {
# "user_id": "<USER or Conversation ID>",
# "in-0": llm_input
# }
# response = self.query_api(payload)
# meeting_notes = self.extract_meeting_notes(response)
# results.append({
# 'Document_Text': row['Document_Text'],
# 'Topic_Summary': meeting_notes
# })
# result_df = pd.DataFrame(results)
# df = df.reset_index(drop=True)
# return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
# # ---------------------------------------------------------------------------------------
# # Function to Extract Excerpts
# # ---------------------------------------------------------------------------------------
# def extract_excerpts(processed_df):
# new_rows = []
# for _, row in processed_df.iterrows():
# Topic_Summary = row['Topic_Summary']
# # Split the Topic_Summary by topic
# sections = re.split(r'\n(?=\[)', Topic_Summary)
# for section in sections:
# # Extract the topic
# topic_match = re.match(r'\[([^\]]+)\]', section)
# if topic_match:
# topic = topic_match.group(1)
# # Extract all excerpts within the section
# excerpts = re.findall(r'- "([^"]+)"', section)
# for excerpt in excerpts:
# new_rows.append({
# 'Document_Text': row['Document_Text'],
# 'Topic_Summary': row['Topic_Summary'],
# 'Excerpt': excerpt,
# 'Topic': topic
# })
# return pd.DataFrame(new_rows)
# #------------------------------------------------------------------------
# # Streamlit Configuration
# #------------------------------------------------------------------------
# # Set page configuration
# st.set_page_config(
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
# page_icon=":bar_chart:",
# layout="centered",
# initial_sidebar_state="auto",
# menu_items={
# 'Get Help': 'mailto:[email protected]',
# 'About': "This app is built to support PDF analysis"
# }
# )
# #------------------------------------------------------------------------
# # Sidebar
# #------------------------------------------------------------------------
# # Sidebar with image
# with st.sidebar:
# # Set the desired width in pixels
# image_width = 300
# # Define the path to the image
# # image_path = "steelcase_small.png"
# image_path = "mtss.ai_small.png"
# # Display the image
# st.image(image_path, width=image_width)
# # Additional sidebar content
# with st.expander("**MTSS.ai**", expanded=True):
# st.write("""
# - **Support**: Cheyne LeVesseur PhD
# - **Email**: [email protected]
# """)
# st.divider()
# st.subheader('Instructions')
# Instructions = """
# - **Step 1**: Upload your PDF file.
# - **Step 2**: Review the processed text.
# - **Step 3**: Add your topics and descriptions of interest.
# - **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
# - **Step 5**: Review bar charts of topics.
# - **Step 6**: Download the processed data as a CSV file.
# """
# st.markdown(Instructions)
# # Load SmolDocling model ()
# @st.cache_resource
# def load_smol_docling():
# model_path = "ds4sd/SmolDocling-256M-preview"
# model, processor = load(model_path)
# config = load_config(model_path)
# return model, processor, config
# model, processor, config = load_smol_docling()
# # Convert PDF to images
# def convert_pdf_to_images(pdf_file):
# images = []
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
# for page_number in range(len(doc)):
# page = doc.load_page(page_number)
# pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
# img_data = pix.tobytes("png")
# image = Image.open(io.BytesIO(img_data))
# images.append(image)
# return images
# # Extract structured markdown text using SmolDocling (mlx_vlm)
# def extract_markdown_from_image(image):
# prompt = "Convert this page to docling."
# formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1)
# output = ""
# for token in stream_generate(
# model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False):
# output += token.text
# if "</doctag>" in token.text:
# break
# # Convert DocTags to Markdown
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image])
# doc = DoclingDocument(name="ExtractedDocument")
# doc.load_from_doctags(doctags_doc)
# markdown_text = doc.export_to_markdown()
# return markdown_text
# # Streamlit UI
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
# if uploaded_file:
# with st.spinner("Processing PDF..."):
# images = convert_pdf_to_images(uploaded_file)
# markdown_texts = []
# for idx, image in enumerate(images):
# markdown_text = extract_markdown_from_image(image)
# markdown_texts.append(markdown_text)
# df = pd.DataFrame({'Document_Text': markdown_texts})
# st.success("PDF processed successfully!")
# # Check if extraction was successful
# if df.empty or df['Document_Text'].isnull().all():
# st.error("No meaningful text extracted from the PDF.")
# st.stop()
# st.markdown("### Extracted Markdown Preview")
# st.write(df.head())
# # ---------------------------------------------------------------------------------------
# # User Input for Topics
# # ---------------------------------------------------------------------------------------
# st.markdown("### Enter Topics and Descriptions")
# num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)
# topics = {}
# for i in range(num_topics):
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
# description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
# if topic and description:
# topics[topic] = description
# # Add a button to execute the analysis
# if st.button("Run Analysis"):
# if not topics:
# st.warning("Please enter at least one topic and description.")
# st.stop()
# # ---------------------------------------------------------------------------------------
# # Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
# # ---------------------------------------------------------------------------------------
# analyzer = SurveyAnalysis()
# processed_df = analyzer.process_dataframe(df, topics)
# df_VIP_extracted = extract_excerpts(processed_df)
# required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
# missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
# if missing_columns:
# st.error(f"Missing columns after processing: {missing_columns}")
# st.stop()
# df_VIP_extracted = df_VIP_extracted[required_columns]
# st.markdown("### Processed Meeting Notes")
# st.dataframe(df_VIP_extracted)
# st.write(f"**Number of meeting notes analyzed:** {len(df)}")
# st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
# # CSV download
# csv = df_VIP_extracted.to_csv(index=False)
# st.download_button(
# "Download data as CSV",
# data=csv,
# file_name='extracted_meeting_notes.csv',
# mime='text/csv'
# )
# # Topic distribution visualization
# topic_counts = df_VIP_extracted['Topic'].value_counts()
# frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
# frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
# st.markdown("### Topic Distribution")
# st.dataframe(frequency_table)
# fig, ax = plt.subplots(figsize=(10, 5))
# ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
# ax.set_ylabel('Count')
# ax.set_title('Frequency of Topics')
# st.pyplot(fig)
# else:
# st.info("Please upload a PDF file to begin.")
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch
# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
headers = {
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
'Content-Type': 'application/json'
}
# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class SurveyAnalysis:
def __init__(self, api_key=None):
self.api_key = api_key
def prepare_llm_input(self, survey_response, topics):
# Create topic description string from user input
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
llm_input = f"""
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
{topic_descriptions}
**Instructions:**
- Extract and summarize the PDF focusing only on the provided topics.
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
- Use **exact quotes** from the original text for each point in your Topic_Summary.
- Exclude erroneous content.
- Do not add additional explanations or instructions.
**Format your response as follows:**
[Topic]
- "Exact quote"
- "Exact quote"
- "Exact quote"
**Meeting Notes:**
{survey_response}
"""
return llm_input
def query_api(self, payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def extract_meeting_notes(self, response):
output = response.get('outputs', {}).get('out-0', '')
return output
def process_dataframe(self, df, topics):
results = []
for _, row in df.iterrows():
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
payload = {
"user_id": "<USER or Conversation ID>",
"in-0": llm_input
}
response = self.query_api(payload)
meeting_notes = self.extract_meeting_notes(response)
results.append({
'Document_Text': row['Document_Text'],
'Topic_Summary': meeting_notes
})
result_df = pd.DataFrame(results)
df = df.reset_index(drop=True)
return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
# ---------------------------------------------------------------------------------------
# Function to Extract Excerpts
# ---------------------------------------------------------------------------------------
def extract_excerpts(processed_df):
new_rows = []
for _, row in processed_df.iterrows():
Topic_Summary = row['Topic_Summary']
# Split the Topic_Summary by topic
sections = re.split(r'\n(?=\[)', Topic_Summary)
for section in sections:
# Extract the topic
topic_match = re.match(r'\[([^\]]+)\]', section)
if topic_match:
topic = topic_match.group(1)
# Extract all excerpts within the section
excerpts = re.findall(r'- "([^"]+)"', section)
for excerpt in excerpts:
new_rows.append({
'Document_Text': row['Document_Text'],
'Topic_Summary': row['Topic_Summary'],
'Excerpt': excerpt,
'Topic': topic
})
return pd.DataFrame(new_rows)
#------------------------------------------------------------------------
# Streamlit Configuration
#------------------------------------------------------------------------
# Set page configuration
st.set_page_config(
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support PDF analysis"
}
)
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
# Sidebar with image
with st.sidebar:
# Set the desired width in pixels
image_width = 300
# Define the path to the image
# image_path = "steelcase_small.png"
image_path = "mtss.ai_small.png"
# Display the image
st.image(image_path, width=image_width)
# Additional sidebar content
with st.expander("**MTSS.ai**", expanded=True):
st.write("""
- **Support**: Cheyne LeVesseur PhD
- **Email**: [email protected]
""")
st.divider()
st.subheader('Instructions')
Instructions = """
- **Step 1**: Upload your PDF file.
- **Step 2**: Review the processed text.
- **Step 3**: Add your topics and descriptions of interest.
- **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
- **Step 5**: Review bar charts of topics.
- **Step 6**: Download the processed data as a CSV file.
"""
st.markdown(Instructions)
# Load SmolDocling model using transformers
@st.cache_resource
def load_smol_docling():
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview",
torch_dtype=torch.float32
).to(device)
return model, processor
model, processor = load_smol_docling()
# Convert PDF to images
def convert_pdf_to_images(pdf_file):
images = []
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page_number in range(len(doc)):
page = doc.load_page(page_number)
pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
img_data = pix.tobytes("png")
image = Image.open(io.BytesIO(img_data))
images.append(image)
return images
# Extract structured markdown text using SmolDocling (transformers)
def extract_markdown_from_image(image):
prompt_text = "Convert this page to docling."
device = "cuda" if torch.cuda.is_available() else "cpu"
# Prepare inputs
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt_text}
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
# Generate outputs
generated_ids = model.generate(**inputs, max_new_tokens=1024)
prompt_length = inputs.input_ids.shape[1]
trimmed_generated_ids = generated_ids[:, prompt_length:]
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
# Clean the output
doctags = doctags.replace("<end_of_utterance>", "").strip()
# Populate document
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
# Create a docling document
doc = DoclingDocument(name="ExtractedDocument")
doc.load_from_doctags(doctags_doc)
# Export as markdown
markdown_text = doc.export_to_markdown()
return markdown_text
# Streamlit UI
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
if uploaded_file:
with st.spinner("Processing PDF..."):
images = convert_pdf_to_images(uploaded_file)
markdown_texts = []
for idx, image in enumerate(images):
markdown_text = extract_markdown_from_image(image)
markdown_texts.append(markdown_text)
df = pd.DataFrame({'Document_Text': markdown_texts})
st.success("PDF processed successfully!")
# Check if extraction was successful
if df.empty or df['Document_Text'].isnull().all():
st.error("No meaningful text extracted from the PDF.")
st.stop()
st.markdown("### Extracted Markdown Preview")
st.write(df.head())
# ---------------------------------------------------------------------------------------
# User Input for Topics
# ---------------------------------------------------------------------------------------
st.markdown("### Enter Topics and Descriptions")
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)
topics = {}
for i in range(num_topics):
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
if topic and description:
topics[topic] = description
# Add a button to execute the analysis
if st.button("Run Analysis"):
if not topics:
st.warning("Please enter at least one topic and description.")
st.stop()
# ---------------------------------------------------------------------------------------
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
# ---------------------------------------------------------------------------------------
analyzer = SurveyAnalysis()
processed_df = analyzer.process_dataframe(df, topics)
df_VIP_extracted = extract_excerpts(processed_df)
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
if missing_columns:
st.error(f"Missing columns after processing: {missing_columns}")
st.stop()
df_VIP_extracted = df_VIP_extracted[required_columns]
st.markdown("### Processed Meeting Notes")
st.dataframe(df_VIP_extracted)
st.write(f"**Number of meeting notes analyzed:** {len(df)}")
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
# CSV download
csv = df_VIP_extracted.to_csv(index=False)
st.download_button(
"Download data as CSV",
data=csv,
file_name='extracted_meeting_notes.csv',
mime='text/csv'
)
# Topic distribution visualization
topic_counts = df_VIP_extracted['Topic'].value_counts()
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
st.markdown("### Topic Distribution")
st.dataframe(frequency_table)
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
ax.set_ylabel('Count')
ax.set_title('Frequency of Topics')
st.pyplot(fig)
else:
st.info("Please upload a PDF file to begin.") |