Spaces:
Runtime error
Runtime error
# --------------------------------------------------------------------------------------- | |
# Imports and Options | |
# --------------------------------------------------------------------------------------- | |
import streamlit as st | |
import pandas as pd | |
import requests | |
import re | |
import fitz # PyMuPDF | |
import io | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
from docling_core.types.doc import DoclingDocument | |
from docling_core.types.doc.document import DocTagsDocument | |
import torch | |
import os | |
from huggingface_hub import InferenceClient | |
# --------------------------------------------------------------------------------------- | |
# Streamlit Page Configuration | |
# --------------------------------------------------------------------------------------- | |
st.set_page_config( | |
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", | |
page_icon=":bar_chart:", | |
layout="centered", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'mailto:[email protected]', | |
'About': "This app is built to support PDF analysis" | |
} | |
) | |
# --------------------------------------------------------------------------------------- | |
# Streamlit Sidebar | |
# --------------------------------------------------------------------------------------- | |
st.sidebar.title("๐ About This App") | |
st.sidebar.markdown(""" | |
#### โ ๏ธ **Important Note on Processing Time** | |
This app uses the **SmolDocling** model (`ds4sd/SmolDocling-256M-preview`) to convert PDF pages into markdown text. Currently, the model is running on a CPU-based environment (**CPU basic | 2 vCPU - 16 GB RAM**), and therefore processing each page can take a significant amount of time (approximately **6 minutes per page**). | |
**Note: It is recommended that you upload single-page PDFs, as testing showed approximately 6 minutes of processing time per page.** | |
This setup is suitable for testing and demonstration purposes, but **not efficient for real-world usage**. | |
For faster processing, consider running the optimized version `ds4sd/SmolDocling-256M-preview-mlx-bf16` locally on a MacBook, where it performs significantly faster. | |
--- | |
#### ๐ ๏ธ **How This App Works** | |
Here's a quick overview of the workflow: | |
1. **Upload PDF**: You upload a PDF document using the uploader provided. | |
2. **Convert PDF to Images**: The PDF is converted into individual images (one per page). | |
3. **Extract Markdown from Images**: Each image is processed by the SmolDocling model to extract markdown-formatted text. | |
4. **Enter Topics and Descriptions**: You provide specific topics and their descriptions you'd like to extract from the document. | |
5. **Extract Excerpts**: The app uses the **meta-llama/Llama-3.1-70B-Instruct** model to extract exact quotes relevant to your provided topics. | |
6. **Results in a DataFrame**: All extracted quotes and their topics are compiled into a structured DataFrame that you can preview and download. | |
--- | |
Please proceed by uploading your PDF file to begin the analysis. | |
""") | |
# --------------------------------------------------------------------------------------- | |
# Session State Initialization | |
# --------------------------------------------------------------------------------------- | |
for key in ['pdf_processed', 'markdown_texts', 'df']: | |
if key not in st.session_state: | |
st.session_state[key] = False if key == 'pdf_processed' else [] | |
# --------------------------------------------------------------------------------------- | |
# API Configuration | |
# --------------------------------------------------------------------------------------- | |
hf_api_key = os.getenv('HF_API_KEY') | |
if not hf_api_key: | |
raise ValueError("HF_API_KEY not set in environment variables") | |
client = InferenceClient(api_key=hf_api_key) | |
# --------------------------------------------------------------------------------------- | |
# Survey Analysis Class | |
# --------------------------------------------------------------------------------------- | |
class AIAnalysis: | |
def __init__(self, client): | |
self.client = client | |
def prepare_llm_input(self, document_content, topics): | |
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()]) | |
return f"""Extract and summarize PDF notes based on topics: | |
{topic_descriptions} | |
Instructions: | |
- Extract exact quotes per topic. | |
- Ignore irrelevant topics. | |
- Strictly follow this format: | |
[Topic] | |
- "Exact quote" | |
Document Content: | |
{document_content} | |
""" | |
def prompt_response_from_hf_llm(self, llm_input): | |
system_prompt = """ | |
You are an expert assistant tasked with extracting exact quotes from provided meeting notes based on given topics. | |
Instructions: | |
- Only extract exact quotes relevant to provided topics. | |
- Ignore irrelevant content. | |
- Strictly follow this format: | |
[Topic] | |
- "Exact quote" | |
""" | |
response = self.client.chat.completions.create( | |
model="meta-llama/Llama-3.1-70B-Instruct", | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": llm_input} | |
], | |
stream=True, | |
temperature=0.5, | |
max_tokens=1024, | |
top_p=0.7 | |
) | |
response_content = "" | |
for message in response: | |
# Correctly handle streaming response | |
response_content += message.choices[0].delta.content | |
print("Full AI Response:", response_content) # Debugging | |
return response_content.strip() | |
def extract_text(self, response): | |
return response | |
def process_dataframe(self, df, topics): | |
results = [] | |
for _, row in df.iterrows(): | |
llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
response = self.prompt_response_from_hf_llm(llm_input) | |
notes = self.extract_text(response) | |
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes}) | |
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1) | |
# --------------------------------------------------------------------------------------- | |
# Helper Functions | |
# --------------------------------------------------------------------------------------- | |
def load_smol_docling(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForVision2Seq.from_pretrained( | |
"ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32 | |
).to(device) | |
return model, processor | |
model, processor = load_smol_docling() | |
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600): | |
images = [] | |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
for page in doc: | |
pix = page.get_pixmap(dpi=dpi) | |
img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB") | |
img.thumbnail((max_size, max_size), Image.LANCZOS) | |
images.append(img) | |
return images | |
def extract_markdown_from_image(image): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip() | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) | |
doc = DoclingDocument(name="ExtractedDocument") | |
doc.load_from_doctags(doctags_doc) | |
return doc.export_to_markdown() | |
# Revised extract_excerpts function with improved robustness | |
def extract_excerpts(processed_df): | |
rows = [] | |
for _, r in processed_df.iterrows(): | |
sections = re.split(r'\n(?=(?:\*\*|\[)?[A-Za-z/ ]+(?:\*\*|\])?\n- )', r['Topic_Summary']) | |
for sec in sections: | |
topic_match = re.match(r'(?:\*\*|\[)?([A-Za-z/ ]+)(?:\*\*|\])?', sec.strip()) | |
if topic_match: | |
topic = topic_match.group(1).strip() | |
excerpts = re.findall(r'- "?([^"\n]+)"?', sec) | |
for excerpt in excerpts: | |
rows.append({ | |
'Document_Text': r['Document_Text'], | |
'Topic_Summary': r['Topic_Summary'], | |
'Excerpt': excerpt.strip(), | |
'Topic': topic | |
}) | |
print("Extracted Rows:", rows) # Debugging | |
return pd.DataFrame(rows) | |
# --------------------------------------------------------------------------------------- | |
# Streamlit UI | |
# --------------------------------------------------------------------------------------- | |
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") | |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
if uploaded_file and not st.session_state['pdf_processed']: | |
with st.spinner("Processing PDF..."): | |
images = convert_pdf_to_images(uploaded_file) | |
markdown_texts = [extract_markdown_from_image(img) for img in images] | |
st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts}) | |
st.session_state['pdf_processed'] = True | |
st.success("PDF processed successfully!") | |
if st.session_state['pdf_processed']: | |
st.markdown("### Extracted Text Preview") | |
st.write(st.session_state['df'].head()) | |
st.markdown("### Enter Topics and Descriptions") | |
num_topics = st.number_input("Number of topics", 1, 10, 1) | |
topics = {} | |
for i in range(num_topics): | |
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") | |
desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") | |
if topic and desc: | |
topics[topic] = desc | |
if st.button("Run Analysis"): | |
if not topics: | |
st.warning("Please enter at least one topic and description.") | |
st.stop() | |
analyzer = AIAnalysis(client) | |
processed_df = analyzer.process_dataframe(st.session_state['df'], topics) | |
extracted_df = extract_excerpts(processed_df) | |
st.markdown("### Extracted Excerpts") | |
st.dataframe(extracted_df) | |
csv = extracted_df.to_csv(index=False) | |
st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv") | |
if not extracted_df.empty: | |
topic_counts = extracted_df['Topic'].value_counts() | |
fig, ax = plt.subplots() | |
topic_counts.plot.bar(ax=ax, color='#3d9aa1') | |
st.pyplot(fig) | |
else: | |
st.warning("No topics were extracted. Please check the input data and topics.") | |
if not uploaded_file: | |
st.info("Please upload a PDF file to begin.") |