Spaces:
Sleeping
Sleeping
File size: 7,013 Bytes
f76d77f ed9a81c ea6a4e1 f76d77f 047420b a507e51 a574f9a a507e51 b376142 a574f9a a507e51 b3484d2 047420b f76d77f b3484d2 f76d77f a2d596c b3484d2 a2d596c b3484d2 a2d596c 4996d49 a2d596c 4996d49 a688783 a2d596c 235a4b4 8e253a5 f600388 235a4b4 b3484d2 8e253a5 4996d49 8e253a5 4996d49 78f6649 235a4b4 4996d49 b3484d2 4996d49 235a4b4 b3484d2 4996d49 b3484d2 4996d49 235a4b4 4996d49 235a4b4 4996d49 235a4b4 a688783 4996d49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import base64
import openai
# Function to encode the image to base64
def encode_image(image_file):
return base64.b64encode(image_file.getvalue()).decode("utf-8")
# Streamlit page setup
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="collapsed")
#Add the image with a specified width
image_width = 300 # Set the desired width in pixels
st.image('MTSS.ai_Logo.png', width=image_width)
st.title('VisionText™ | Accessibility')
st.subheader(':green[_Image Alt Text Generator_]')
# Retrieve the OpenAI API Key from secrets
openai.api_key = st.secrets["openai_api_key"]
# File uploader allows user to add their own image
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
if uploaded_file:
# Display the uploaded image
with st.expander("Image", expanded = True):
st.image(uploaded_file, caption=uploaded_file.name, use_column_width=True)
# Toggle for showing additional details input
show_details = st.toggle("Add details about the image", value=False)
if show_details:
# Text input for additional details about the image, shown only if toggle is True
additional_details = st.text_area(
"Add any additional details or context about the image here:",
disabled=not show_details
)
# Button to trigger the analysis
analyze_button = st.button("Analyze the Image", type="secondary")
# # Check if an image has been uploaded, if the API key is available, and if the button has been pressed
# if uploaded_file is not None and analyze_button:
# with st.spinner("Analyzing the image ..."):
# # Encode the image
# base64_image = encode_image(uploaded_file)
# # Optimized prompt for additional clarity and detail
# prompt_text = (
# "You are a highly knowledgeable accessibility expert. "
# "Your task is to examine the following image in detail. "
# "Provide a comprehensive, factual, and accurate explanation of what the image depicts. "
# "Highlight key elements and their significance, and present your analysis in clear, well-structured paragraph format. "
# "Create a detailed image caption in explaining in 150 words or less."
# )
# if show_details and additional_details:
# prompt_text += (
# f"\n\nAdditional Context Provided by the User:\n{additional_details}"
# )
# # Create the payload for the completion request
# messages = [
# {
# "role": "user",
# "content": [
# {"type": "text", "text": prompt_text},
# {
# "type": "image_url",
# "image_url": f"data:image/jpeg;base64,{base64_image}",
# },
# ],
# }
# ]
# # Make the request to the OpenAI API
# try:
# # Without Stream
# # response = openai.chat.completions.create(
# # model="gpt-4-vision-preview", messages=messages, max_tokens=500, stream=False
# # )
# # Stream the response
# full_response = ""
# message_placeholder = st.empty()
# for completion in openai.chat.completions.create(
# model="gpt-4-vision-preview", messages=messages,
# max_tokens=150, stream=True
# ):
# # Check if there is content to display
# if completion.choices[0].delta.content is not None:
# full_response += completion.choices[0].delta.content
# message_placeholder.markdown(full_response + "▌")
# # Final update to placeholder after the stream ends
# message_placeholder.markdown(full_response)
# # Display the response in the app
# # st.write(response.choices[0].message.content)
# except Exception as e:
# st.error(f"An error occurred: {e}")
# else:
# # Warnings for user action required
# if not uploaded_file and analyze_button:
# st.warning("Please upload an image.")
# Check if an image has been uploaded, if the API key is available, and if the button has been pressed
if uploaded_file is not None and analyze_button:
with st.spinner("Analyzing the image ..."):
# Encode the image
base64_image = encode_image(uploaded_file)
# Optimized prompt for additional clarity and detail
prompt_text = (
"You are a highly knowledgeable accessibility expert. "
"Your task is to examine the following image in detail. "
"Provide a comprehensive, factual, and accurate explanation of what the image depicts. "
"Highlight key elements and their significance, and present your analysis in clear, well-structured paragraph format. "
"Create a detailed image caption in explaining in 150 words or less."
)
if show_details and additional_details:
prompt_text += (
f"\n\nAdditional Context Provided by the User:\n{additional_details}"
)
# Create the payload for the completion request
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt_text},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}",
},
],
}
]
# Make the request to the OpenAI API
try:
# Without Stream
# response = openai.chat.completions.create(
# model="gpt-4-vision-preview", messages=messages, max_tokens=500, stream=False
# )
# Stream the response
full_response = ""
message_placeholder = st.empty()
for completion in openai.chat.completions.create(
model="gpt-4-vision-preview", messages=messages,
max_tokens=150, stream=True
):
# Check if there is content to display
if completion.choices[0].delta.content is not None:
full_response += completion.choices[0].delta.content
# Display the response in a text area
st.text_area('Response:', value=full_response, height=400, key="response_text_area")
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
except Exception as e:
st.error(f"An error occurred: {e}")
else:
# Warnings for user action required
if not uploaded_file and analyze_button:
st.warning("Please upload an image.")
|