File size: 4,052 Bytes
f76d77f
 
ea6a4e1
 
f76d77f
 
 
 
 
047420b
f76d77f
 
047420b
 
f76d77f
27255d4
 
 
047420b
f76d77f
 
a2d596c
 
 
 
4996d49
 
a2d596c
4996d49
 
a2d596c
 
 
 
 
4996d49
 
a2d596c
8e253a5
 
 
 
 
4996d49
8e253a5
 
4996d49
 
 
 
 
 
 
a2d596c
4996d49
 
a2d596c
4996d49
 
 
 
 
 
 
 
 
 
 
 
 
a2d596c
4996d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
import base64
import openai

# Function to encode the image to base64
def encode_image(image_file):
    return base64.b64encode(image_file.getvalue()).decode("utf-8")

# Streamlit page setup
st.set_page_config(page_title="MTSS Image Accessibility Alt Text Generator", layout="centered", initial_sidebar_state="collapsed")
st.title("MTSS Snapshot: Accessibility Image Textifier: `Alt Text`")

# Retrieve the OpenAI API key from Streamlit secrets and set it
openai.api_key = st.secrets["openai_api_key"]

# Set the OpenAI API key for the client
openai.api_key = api_key

# File uploader for images
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])

if uploaded_file:
    with st.expander("Image", expanded=True):
        st.image(uploaded_file, caption=uploaded_file.name, use_column_width=True)

# Toggle for additional details input
show_details = st.checkbox("Add details about the image")

if show_details:
    # Text input for additional details about the image, shown only if toggle is True
    additional_details = st.text_area(
        "Add any additional details or context about the image here:",
        disabled=not show_details
    )

# Button to trigger the analysis
analyze_button = st.button("Analyse the MTSS Image")

# Check if an image has been uploaded, if the API key is available, and if the button has been pressed
if uploaded_file is not None and api_key and analyze_button:

    with st.spinner("Analysing the image ..."):
        # Encode the image
        base64_image = encode_image(uploaded_file)
    
        # Optimized prompt for additional clarity and detail
        prompt_text = (
            "You are a highly knowledgeable accessibility expert. "
            "Your task is to examine the following image in detail. "
            "Provide a comprehensive, factual, and accurate explanation of what the image depicts. "
            "Highlight key elements and their significance, and present your analysis in clear, well-structured format. "
            "Create a detailed image caption explaining in 150 words or less. "
        )

        if show_details and additional_details:
            prompt_text += f"\n\nAdditional Context Provided by the User:\n{additional_details}"

        # Create the payload for the completion request
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt_text},
                    {
                        "type": "image_url",
                        "image_url": f"data:image/jpeg;base64,{base64_image}",
                    },
                ],
            }
        ]

        # Make the request to the OpenAI API
        try:
            # Without Stream
            
            # response = openai.chat.completions.create(
            #     model="gpt-4-vision-preview", messages=messages, max_tokens=500, stream=False
            # )
    
            # Stream the response
            full_response = ""
            message_placeholder = st.empty()
            for completion in openai.chat.completions.create(
                model="gpt-4-vision-preview", messages=messages, 
                max_tokens=150, stream=True
            ):
                # Check if there is content to display
                if completion.choices[0].delta.content is not None:
                    full_response += completion.choices[0].delta.content
                    message_placeholder.markdown(full_response + "▌")
            # Final update to placeholder after the stream ends
            message_placeholder.markdown(full_response)
    
            # Display the response in the app
            # st.write(response.choices[0].message.content)
        except Exception as e:
            st.error(f"An error occurred: {e}")
else:
    # Warnings for user action required
    if not uploaded_file and analyze_button:
        st.warning("Please upload an image.")
    if not api_key:
        st.warning("Please enter your OpenAI API key.")