Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import base64
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
5 |
# Function to read the image file and return a base64-encoded string
|
@@ -16,7 +17,7 @@ st.image('MTSS.ai_Logo.png', width=image_width)
|
|
16 |
st.header('VisionTexts™ | Accessibility')
|
17 |
st.subheader('Image Alt Text Creator')
|
18 |
|
19 |
-
# Initialize the Hugging Face InferenceClient with the API key from
|
20 |
client = InferenceClient(api_key=st.secrets["huggingface_api_key"])
|
21 |
|
22 |
# File uploader
|
@@ -35,7 +36,6 @@ if show_details:
|
|
35 |
# Text input for additional details about the image
|
36 |
additional_details = st.text_area(
|
37 |
"The details could include specific information that is important to include in the alt text or reflect why the image is being used:",
|
38 |
-
disabled=not show_details
|
39 |
)
|
40 |
|
41 |
# Toggle for modifying the prompt for complex images
|
@@ -49,7 +49,7 @@ if complex_image:
|
|
49 |
)
|
50 |
|
51 |
# Button to trigger the analysis
|
52 |
-
analyze_button = st.button("Analyze the Image"
|
53 |
|
54 |
# Optimized prompt for complex images
|
55 |
complex_image_prompt_text = (
|
@@ -64,59 +64,69 @@ if uploaded_file is not None and analyze_button:
|
|
64 |
|
65 |
with st.spinner("Analyzing the image ..."):
|
66 |
# Get base64-encoded image string
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
else:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
else:
|
121 |
# Warning for user action required
|
122 |
if not uploaded_file and analyze_button:
|
|
|
1 |
import streamlit as st
|
2 |
import base64
|
3 |
+
import json
|
4 |
from huggingface_hub import InferenceClient
|
5 |
|
6 |
# Function to read the image file and return a base64-encoded string
|
|
|
17 |
st.header('VisionTexts™ | Accessibility')
|
18 |
st.subheader('Image Alt Text Creator')
|
19 |
|
20 |
+
# Initialize the Hugging Face InferenceClient with the API key from secrets
|
21 |
client = InferenceClient(api_key=st.secrets["huggingface_api_key"])
|
22 |
|
23 |
# File uploader
|
|
|
36 |
# Text input for additional details about the image
|
37 |
additional_details = st.text_area(
|
38 |
"The details could include specific information that is important to include in the alt text or reflect why the image is being used:",
|
|
|
39 |
)
|
40 |
|
41 |
# Toggle for modifying the prompt for complex images
|
|
|
49 |
)
|
50 |
|
51 |
# Button to trigger the analysis
|
52 |
+
analyze_button = st.button("Analyze the Image")
|
53 |
|
54 |
# Optimized prompt for complex images
|
55 |
complex_image_prompt_text = (
|
|
|
64 |
|
65 |
with st.spinner("Analyzing the image ..."):
|
66 |
# Get base64-encoded image string
|
67 |
+
image_bytes = uploaded_file.read()
|
68 |
+
base64_image_string = base64.b64encode(image_bytes).decode('utf-8')
|
69 |
+
|
70 |
+
# Detect the image content type
|
71 |
+
import imghdr
|
72 |
+
image_type = imghdr.what(None, h=image_bytes)
|
73 |
+
if image_type is None:
|
74 |
+
st.error("Unsupported image type. Please upload a JPEG or PNG image.")
|
75 |
else:
|
76 |
+
content_type = f"image/{image_type}"
|
77 |
+
|
78 |
+
# Determine which prompt to use based on the complexity of the image
|
79 |
+
if complex_image:
|
80 |
+
prompt_text = complex_image_prompt_text
|
81 |
+
else:
|
82 |
+
prompt_text = (
|
83 |
+
"As an expert in image accessibility and alternative text, succinctly describe the image provided in less than 125 characters. "
|
84 |
+
"Provide a brief description using not more than 125 characters that conveys the essential information in three or fewer clear and concise sentences for use as alt text. "
|
85 |
+
"Skip phrases like 'image of' or 'picture of.' "
|
86 |
+
"Your description should form a clear, well-structured, and factual paragraph that avoids bullet points and newlines, focusing on creating a seamless narrative for accessibility purposes."
|
87 |
+
)
|
88 |
+
|
89 |
+
if show_details and additional_details:
|
90 |
+
prompt_text += (
|
91 |
+
f"\n\nInclude the additional context provided by the user in your description:\n{additional_details}"
|
92 |
+
)
|
93 |
+
|
94 |
+
# Create the payload for the completion request
|
95 |
+
messages = [
|
96 |
+
{
|
97 |
+
"role": "user",
|
98 |
+
"content": prompt_text,
|
99 |
+
}
|
100 |
+
]
|
101 |
+
|
102 |
+
# Attachments array containing the image
|
103 |
+
attachments = [
|
104 |
+
{
|
105 |
+
"type": "image",
|
106 |
+
"content": base64_image_string,
|
107 |
+
"content_type": content_type,
|
108 |
+
}
|
109 |
+
]
|
110 |
+
|
111 |
+
# Make the request to the Hugging Face API
|
112 |
+
try:
|
113 |
+
# Send the request to the model
|
114 |
+
completion = client.chat.completions.create(
|
115 |
+
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
116 |
+
messages=messages,
|
117 |
+
attachments=attachments,
|
118 |
+
max_tokens=500
|
119 |
+
)
|
120 |
+
|
121 |
+
# Extract the assistant's response
|
122 |
+
assistant_response = completion.choices[0].message['content']
|
123 |
+
|
124 |
+
# Display the response
|
125 |
+
st.markdown(assistant_response)
|
126 |
+
|
127 |
+
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
|
128 |
+
except Exception as e:
|
129 |
+
st.error(f"An error occurred: {e}")
|
130 |
else:
|
131 |
# Warning for user action required
|
132 |
if not uploaded_file and analyze_button:
|