Spaces:
Sleeping
Sleeping
import os | |
import faiss | |
import pickle | |
import numpy as np | |
import re | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoTokenizer, pipeline | |
from huggingface_hub import InferenceClient | |
# Token Hugging Face depuis les secrets (Space) | |
HF_TOKEN = os.environ.get("edup2") | |
use_client = False | |
# Tentative de chargement de Mistral | |
try: | |
if HF_TOKEN: | |
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1" | |
client = InferenceClient(MODEL_NAME, token=HF_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) | |
use_client = True | |
else: | |
raise ValueError("Pas de token trouvé pour Mistral.") | |
except Exception as e: | |
print(f"⚠️ Impossible de charger Mistral : {e}") | |
MODEL_NAME = "google/flan-t5-base" | |
generator = pipeline("text2text-generation", model=MODEL_NAME) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
use_client = False | |
# Chargement de l’index FAISS et des documents | |
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"): | |
index = faiss.read_index(index_path) | |
with open(doc_path, "rb") as f: | |
documents = pickle.load(f) | |
return index, documents | |
# Modèle d’embedding | |
def get_embedding_model(): | |
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") | |
# Recherche dans l’index | |
def query_index(question, index, documents, model, k=3): | |
question_embedding = model.encode([question]) | |
_, indices = index.search(np.array(question_embedding).astype("float32"), k) | |
return [documents[i] for i in indices[0]] | |
# Nettoyage du contexte | |
def nettoyer_context(context): | |
context = re.sub(r"\[\'(.*?)\'\]", r"\1", context) | |
context = context.replace("None", "") | |
return context | |
# Génération de la réponse | |
def generate_answer(question, context): | |
prompt = f"""Voici des informations sur des établissements et formations : | |
{context} | |
Formule ta réponse comme un conseiller d’orientation bienveillant, de manière fluide et naturelle. | |
Question : {question} | |
Réponse :""" | |
if use_client: | |
response = client.text_generation(prompt=prompt, max_new_tokens=300, timeout=30) | |
return response | |
else: | |
result = generator(prompt, max_new_tokens=256, do_sample=True) | |
return result[0]["generated_text"] | |