Edu_Pilot_g / rag_utils.py
Programmes's picture
Update rag_utils.py
2e4368d verified
import os
import faiss
import pickle
import numpy as np
import re
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, pipeline
from huggingface_hub import InferenceClient
# Token Hugging Face depuis les secrets (Space)
HF_TOKEN = os.environ.get("edup2")
use_client = False
# Tentative de chargement de Mistral
try:
if HF_TOKEN:
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
client = InferenceClient(MODEL_NAME, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
use_client = True
else:
raise ValueError("Pas de token trouvé pour Mistral.")
except Exception as e:
print(f"⚠️ Impossible de charger Mistral : {e}")
MODEL_NAME = "google/flan-t5-base"
generator = pipeline("text2text-generation", model=MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
use_client = False
# Chargement de l’index FAISS et des documents
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
index = faiss.read_index(index_path)
with open(doc_path, "rb") as f:
documents = pickle.load(f)
return index, documents
# Modèle d’embedding
def get_embedding_model():
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
# Recherche dans l’index
def query_index(question, index, documents, model, k=3):
question_embedding = model.encode([question])
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
return [documents[i] for i in indices[0]]
# Nettoyage du contexte
def nettoyer_context(context):
context = re.sub(r"\[\'(.*?)\'\]", r"\1", context)
context = context.replace("None", "")
return context
# Génération de la réponse
def generate_answer(question, context):
prompt = f"""Voici des informations sur des établissements et formations :
{context}
Formule ta réponse comme un conseiller d’orientation bienveillant, de manière fluide et naturelle.
Question : {question}
Réponse :"""
if use_client:
response = client.text_generation(prompt=prompt, max_new_tokens=300, timeout=30)
return response
else:
result = generator(prompt, max_new_tokens=256, do_sample=True)
return result[0]["generated_text"]