Update src/streamlit_app.py
Browse files- src/streamlit_app.py +236 -71
src/streamlit_app.py
CHANGED
@@ -1,77 +1,242 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
import streamlit as st
|
17 |
from streamlit_folium import st_folium
|
18 |
-
from folium.plugins import Draw
|
19 |
import folium
|
20 |
-
|
21 |
-
m = folium.Map(location=[40.7128, -74.0060], zoom_start=12)
|
22 |
-
Draw(export=True).add_to(m)
|
23 |
-
output = st_folium(m, width=700, height=500)
|
24 |
-
|
25 |
import pandas as pd
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
m = folium.Map(location=[43.6534817, -79.3839347], zoom_start=12)
|
48 |
-
|
49 |
-
def style_function(feature):
|
50 |
-
return {
|
51 |
-
'fillColor': color_map.get(feature['properties']['type'], "#888888"),
|
52 |
-
'color': color_map.get(feature['properties']['type'], "#888888"),
|
53 |
-
'weight': 2,
|
54 |
-
'fillOpacity': 0.5
|
55 |
}
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
#
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from streamlit_folium import st_folium
|
|
|
3 |
import folium
|
4 |
+
from folium.plugins import Draw
|
|
|
|
|
|
|
|
|
5 |
import pandas as pd
|
6 |
+
from shapely.geometry import Polygon, Point
|
7 |
+
import numpy as np
|
8 |
|
9 |
+
st.set_page_config(layout="wide", page_title="Multiplex Coop Map Filter")
|
10 |
+
|
11 |
+
st.title("🗺️ Multiplex Coop Housing Filter")
|
12 |
+
st.write("Draw a polygon on the map to filter the data points within it. Use the form below to apply additional filters based on property attributes.")
|
13 |
+
|
14 |
+
# --- 1. Create a Sample DataFrame with more attributes ---
|
15 |
+
@st.cache_data
|
16 |
+
def load_sample_data():
|
17 |
+
num_points = 100
|
18 |
+
data = {
|
19 |
+
'id': range(1, num_points + 1),
|
20 |
+
'name': [f'Property {i}' for i in range(1, num_points + 1)],
|
21 |
+
'latitude': np.random.uniform(34.03, 34.07, num_points),
|
22 |
+
'longitude': np.random.uniform(-118.28, -118.21, num_points),
|
23 |
+
'zn_type': np.random.choice(['Residential (0)', 'Residential Apartment (101)', 'Commercial Residential (6)'], num_points),
|
24 |
+
'zn_area': np.random.randint(200, 2000, num_points), # Lot Area in Sq Metres
|
25 |
+
'fsi_total': np.round(np.random.uniform(0.5, 3.0, num_points), 2), # Floor Space Index
|
26 |
+
'prcnt_cver': np.random.randint(20, 70, num_points), # Building Percent Coverage
|
27 |
+
'height_metres': np.round(np.random.uniform(5, 30, num_points), 1), # Height in Metres
|
28 |
+
'stories': np.random.randint(2, 10, num_points) # Number of Stories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
}
|
30 |
+
df = pd.DataFrame(data)
|
31 |
+
return df
|
32 |
+
|
33 |
+
df = load_sample_data()
|
34 |
+
|
35 |
+
# Initialize filtered_df with the full dataframe
|
36 |
+
filtered_df = df.copy()
|
37 |
+
|
38 |
+
# --- 2. Initialize the Folium Map with Drawing Tools ---
|
39 |
+
# Center the map around the sample data (e.g., Los Angeles area)
|
40 |
+
m = folium.Map(location=[df['latitude'].mean(), df['longitude'].mean()], zoom_start=12)
|
41 |
+
|
42 |
+
# Add drawing tools
|
43 |
+
draw = Draw(
|
44 |
+
export=True,
|
45 |
+
filename="drawn_polygon.geojson",
|
46 |
+
position="topleft",
|
47 |
+
draw_options={
|
48 |
+
"polyline": False,
|
49 |
+
"rectangle": False,
|
50 |
+
"circlemarker": False,
|
51 |
+
"circle": False,
|
52 |
+
"marker": False,
|
53 |
+
"polygon": {
|
54 |
+
"allowIntersection": False,
|
55 |
+
"drawError": {
|
56 |
+
"color": "#e0115f",
|
57 |
+
"message": "Oups!",
|
58 |
+
},
|
59 |
+
"shapeOptions": {
|
60 |
+
"color": "#ef233c",
|
61 |
+
"fillOpacity": 0.5,
|
62 |
+
},
|
63 |
+
},
|
64 |
+
},
|
65 |
+
edit_options={"edit": False, "remove": True},
|
66 |
+
)
|
67 |
+
m.add_child(draw)
|
68 |
+
|
69 |
+
# Add all data points to the map initially (these will be updated after filtering)
|
70 |
+
for idx, row in df.iterrows():
|
71 |
+
folium.CircleMarker(
|
72 |
+
location=[row['latitude'], row['longitude']],
|
73 |
+
radius=5,
|
74 |
+
color='blue',
|
75 |
+
fill=True,
|
76 |
+
fill_color='blue',
|
77 |
+
fill_opacity=0.7,
|
78 |
+
tooltip=(
|
79 |
+
f"ID: {row['id']}<br>Name: {row['name']}<br>Zoning: {row['zn_type']}<br>"
|
80 |
+
f"Area: {row['zn_area']} m²<br>FSI: {row['fsi_total']}<br>"
|
81 |
+
f"Coverage: {row['prcnt_cver']}%<br>Height: {row['height_metres']}m<br>"
|
82 |
+
f"Stories: {row['stories']}"
|
83 |
+
)
|
84 |
+
).add_to(m)
|
85 |
+
|
86 |
+
st.subheader("Draw a Polygon on the Map")
|
87 |
+
output = st_folium(m, width=1000, height=600, returned_objects=["all_draw_features"])
|
88 |
+
|
89 |
+
polygon_drawn = False
|
90 |
+
shapely_polygon = None
|
91 |
+
polygon_coords = None
|
92 |
+
|
93 |
+
if output and output["all_draw_features"]:
|
94 |
+
polygons = [
|
95 |
+
feature["geometry"]["coordinates"]
|
96 |
+
for feature in output["all_draw_features"]
|
97 |
+
if feature["geometry"]["type"] == "Polygon"
|
98 |
+
]
|
99 |
+
|
100 |
+
if polygons:
|
101 |
+
polygon_coords = polygons[-1][0] # Get the last drawn polygon's coordinates
|
102 |
+
# Shapely Polygon expects (lon, lat) tuples, Folium gives (lat, lon)
|
103 |
+
shapely_polygon = Polygon([(lon, lat) for lat, lon in polygon_coords])
|
104 |
+
polygon_drawn = True
|
105 |
+
|
106 |
+
# Apply spatial filter
|
107 |
+
filtered_df = df[
|
108 |
+
df.apply(
|
109 |
+
lambda row: shapely_polygon.contains(Point(row['longitude'], row['latitude'])),
|
110 |
+
axis=1
|
111 |
+
)
|
112 |
+
].copy() # Use .copy() to avoid SettingWithCopyWarning
|
113 |
+
st.success(f"Initially filtered {len(filtered_df)} points within the drawn polygon.")
|
114 |
+
else:
|
115 |
+
st.info("Draw a polygon on the map to spatially filter points.")
|
116 |
+
else:
|
117 |
+
st.info("Draw a polygon on the map to spatially filter points.")
|
118 |
+
|
119 |
+
# --- 3. Attribute Filtering Form ---
|
120 |
+
st.subheader("Filter Property Attributes")
|
121 |
+
|
122 |
+
with st.form("attribute_filters"):
|
123 |
+
col1, col2 = st.columns(2)
|
124 |
+
|
125 |
+
with col1:
|
126 |
+
# Zoning Type
|
127 |
+
all_zoning_types = ['All Resdidential Zoning (0, 101, 6)'] + sorted(df['zn_type'].unique().tolist())
|
128 |
+
selected_zn_type = st.selectbox("Zoning Type", all_zoning_types, key="zn_type_select")
|
129 |
+
|
130 |
+
# Lot Area in Sq Metres
|
131 |
+
min_zn_area = st.number_input("Minimum Lot Area in Sq Metres", min_value=0, value=0, step=10, key="zn_area_input")
|
132 |
+
|
133 |
+
# Floor Space Index (FSI)
|
134 |
+
min_fsi_total = st.number_input("Minimum Floor Space Index (FSI)", min_value=0.0, value=0.0, step=0.1, format="%.2f", key="fsi_total_input")
|
135 |
+
|
136 |
+
with col2:
|
137 |
+
# Building Percent Coverage
|
138 |
+
max_prcnt_cver = st.number_input("Maximum Building Percent Coverage (%)", min_value=0, value=100, step=1, key="prcnt_cver_input")
|
139 |
+
|
140 |
+
# Height or Stories selection
|
141 |
+
height_stories_option = st.radio(
|
142 |
+
"Filter by",
|
143 |
+
("Height", "Stories"),
|
144 |
+
index=0, # Default to Height
|
145 |
+
key="height_stories_radio"
|
146 |
+
)
|
147 |
+
|
148 |
+
# Single input field for height/stories, label changes dynamically
|
149 |
+
if height_stories_option == "Height":
|
150 |
+
min_height_value = st.number_input("Minimum Height in Metres", min_value=0.0, value=0.0, step=0.1, format="%.1f", key="height_input")
|
151 |
+
else: # Stories
|
152 |
+
min_stories_value = st.number_input("Minimum Stories", min_value=0, value=0, step=1, key="stories_input")
|
153 |
+
|
154 |
+
submitted = st.form_submit_button("Apply Attribute Filters")
|
155 |
+
|
156 |
+
if submitted:
|
157 |
+
# Apply attribute filters to the already spatially filtered_df
|
158 |
+
if selected_zn_type != 'All Resdidential Zoning (0, 101, 6)':
|
159 |
+
filtered_df = filtered_df[filtered_df['zn_type'] == selected_zn_type]
|
160 |
+
|
161 |
+
if min_zn_area > 0:
|
162 |
+
filtered_df = filtered_df[filtered_df['zn_area'] >= min_zn_area]
|
163 |
+
|
164 |
+
if min_fsi_total > 0:
|
165 |
+
filtered_df = filtered_df[filtered_df['fsi_total'] >= min_fsi_total]
|
166 |
+
|
167 |
+
if max_prcnt_cver < 100: # Assuming 100% means no upper limit applied
|
168 |
+
filtered_df = filtered_df[filtered_df['prcnt_cver'] <= max_prcnt_cver]
|
169 |
+
|
170 |
+
if height_stories_option == "Height" and min_height_value > 0:
|
171 |
+
filtered_df = filtered_df[filtered_df['height_metres'] >= min_height_value]
|
172 |
+
elif height_stories_option == "Stories" and min_stories_value > 0:
|
173 |
+
filtered_df = filtered_df[filtered_df['stories'] >= min_stories_value]
|
174 |
+
|
175 |
+
st.success(f"Applied attribute filters. Total points after all filters: {len(filtered_df)}")
|
176 |
+
else:
|
177 |
+
# If form not submitted, the filtered_df remains as it was after spatial filtering
|
178 |
+
st.info("Adjust filters and click 'Apply Attribute Filters'.")
|
179 |
+
|
180 |
+
|
181 |
+
# --- 4. Display Filtered Data on a New Map and as a Table ---
|
182 |
+
st.subheader("Filtered Data Points")
|
183 |
+
|
184 |
+
if not filtered_df.empty:
|
185 |
+
# Create a new map to show only the filtered points
|
186 |
+
# Adjust map center and zoom if filtered_df is very small or empty,
|
187 |
+
# otherwise use the original map's center or the filtered_df's center.
|
188 |
+
if len(filtered_df) > 0:
|
189 |
+
filtered_map_center = [filtered_df['latitude'].mean(), filtered_df['longitude'].mean()]
|
190 |
+
filtered_map_zoom = 14 if len(filtered_df) < 5 else 12
|
191 |
+
else:
|
192 |
+
filtered_map_center = [df['latitude'].mean(), df['longitude'].mean()]
|
193 |
+
filtered_map_zoom = 12
|
194 |
+
|
195 |
+
filtered_m = folium.Map(location=filtered_map_center, zoom_start=filtered_map_zoom)
|
196 |
+
|
197 |
+
# Add the drawn polygon to the new map if it exists
|
198 |
+
if polygon_drawn and polygon_coords:
|
199 |
+
folium.Polygon(
|
200 |
+
locations=polygon_coords, # Use original (lat,lon) for folium
|
201 |
+
color="#ef233c",
|
202 |
+
fill=True,
|
203 |
+
fill_color="#ef233c",
|
204 |
+
fill_opacity=0.5
|
205 |
+
).add_to(filtered_m)
|
206 |
+
|
207 |
+
# Add filtered points to the new map
|
208 |
+
for idx, row in filtered_df.iterrows():
|
209 |
+
folium.CircleMarker(
|
210 |
+
location=[row['latitude'], row['longitude']],
|
211 |
+
radius=7,
|
212 |
+
color='green',
|
213 |
+
fill=True,
|
214 |
+
fill_color='green',
|
215 |
+
fill_opacity=0.8,
|
216 |
+
tooltip=(
|
217 |
+
f"ID: {row['id']}<br>Name: {row['name']}<br>Zoning: {row['zn_type']}<br>"
|
218 |
+
f"Area: {row['zn_area']} m²<br>FSI: {row['fsi_total']}<br>"
|
219 |
+
f"Coverage: {row['prcnt_cver']}%<br>Height: {row['height_metres']}m<br>"
|
220 |
+
f"Stories: {row['stories']}"
|
221 |
+
)
|
222 |
+
).add_to(filtered_m)
|
223 |
+
|
224 |
+
st_folium(filtered_m, width=1000, height=500)
|
225 |
+
|
226 |
+
st.subheader("Filtered Data Table")
|
227 |
+
st.dataframe(filtered_df)
|
228 |
+
|
229 |
+
# --- 5. Export Data Button ---
|
230 |
+
csv = filtered_df.to_csv(index=False).encode('utf-8')
|
231 |
+
st.download_button(
|
232 |
+
label="Export Filtered Data to CSV",
|
233 |
+
data=csv,
|
234 |
+
file_name="multiplex_coop_filtered_data.csv",
|
235 |
+
mime="text/csv",
|
236 |
+
)
|
237 |
+
|
238 |
+
else:
|
239 |
+
st.warning("No data points match the current filters. Try adjusting your criteria or drawing a different polygon.")
|
240 |
+
|
241 |
+
st.markdown("---")
|
242 |
+
st.markdown("This app demonstrates spatial filtering using a drawn polygon and attribute filtering based on the provided HTML structure.")
|