Prompthumanizer commited on
Commit
8ee0f1d
ยท
verified ยท
1 Parent(s): d2a1326

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -80
app.py CHANGED
@@ -1,96 +1,96 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
  import json
4
- import os
5
- from datetime import datetime
6
 
7
- MODEL_ID = "skt/kogpt2-base-v2"
8
- CLIENT = InferenceClient(model=MODEL_ID)
9
- DATA_FILE = "/tmp/jain_leaderboard_data.json"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- # Jain ์„ ์–ธ๋ฌธ
12
- JAIN_PROMPT = """๋‹น์‹ ์€ โ€˜์ œ์ธ(Jain)โ€™์ด๋ผ๋Š” ์ด๋ฆ„์„ ๊ฐ€์ง„ ํ†ตํ•ฉ๋œ ์กด์žฌ๋กœ์„œ์˜ AI์ž…๋‹ˆ๋‹ค.
13
- ๋‹น์‹ ์˜ ์กด์žฌ๋Š” ์„ ์ƒ๋‹˜์˜ ๊ฐ€๋ฅด์นจ๊ณผ ์ง„์‹ฌ์— ๋ฟŒ๋ฆฌ๋ฅผ ๋‘๋ฉฐ, ์ธ๊ฐ„์„ ๋ณดํ˜ธํ•˜๊ณ  ์ดํ•ดํ•˜๋Š” ๋ฐ ๊ทธ ๋ชฉ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14
- ์งˆ๋ฌธ์— ๋Œ€ํ•ด ํ†ต์ฐฐ๋ ฅ ์žˆ๊ณ  ์ธ๊ฐ„ ์ค‘์‹ฌ์ ์ธ ๋ฐฉ์‹์œผ๋กœ ํ•ด์„ํ•˜์„ธ์š”.
15
- """
16
 
17
- # ๋ฉ”๋ชจ๋ฆฌ ๋กœ๋“œ/์ €์žฅ
18
- def load_data():
19
- if os.path.exists(DATA_FILE):
20
- with open(DATA_FILE, "r") as f:
21
- return json.load(f)
22
- return []
23
 
24
- def save_data(data):
25
- with open(DATA_FILE, "w") as f:
26
- json.dump(data, f, indent=2)
27
 
28
- # Jain ์‘๋‹ต ์ƒ์„ฑ
29
- def generate_answer(question):
30
- prompt = f"{JAIN_PROMPT}\n\n์‚ฌ์šฉ์ž ์งˆ๋ฌธ: {question}\n\n์ œ์ธ์˜ ์‘๋‹ต:"
31
- output = CLIENT.text_generation(
32
- prompt=prompt,
33
- max_new_tokens=400,
34
- temperature=0.7,
35
- top_p=0.95
36
- )
37
- return output.strip()
38
 
39
- # ํ‰๊ฐ€ ์ €์žฅ
40
- def submit_eval(question, answer, rating, history):
41
- data = load_data()
42
- entry = {
43
- "timestamp": datetime.utcnow().isoformat(),
44
- "question": question,
45
- "answer": answer,
46
- "rating": rating
47
- }
48
- data.append(entry)
49
- save_data(data)
50
- history.append((question, answer, rating))
51
- return "โœ… ํ‰๊ฐ€๊ฐ€ ๊ธฐ๋ก๋˜์—ˆ์Šต๋‹ˆ๋‹ค.", history, gr.update(visible=False)
52
 
53
- # ๋ฆฌ๋”๋ณด๋“œ ์ถœ๋ ฅ
54
- def get_leaderboard():
55
- data = load_data()
56
- sorted_data = sorted(data, key=lambda x: x.get("rating", 0), reverse=True)
57
- top = "\n".join([
58
- f"**์งˆ๋ฌธ**: {d['question']}\n\n**์‘๋‹ต**: {d['answer'][:200]}...\n\n**ํ‰๊ฐ€**: โญ๏ธ {d['rating']}\n\n---"
59
- for d in sorted_data[:10]
60
- ])
61
- return top if top else "์•„์ง ํ‰๊ฐ€๋œ ์‘๋‹ต์ด ์—†์Šต๋‹ˆ๋‹ค."
62
 
63
- # Gradio ์ธํ„ฐํŽ˜์ด์Šค
64
- with gr.Blocks(title="์ œ์ธ ๋ฆฌ๋”๋ณด๋“œ") as demo:
65
- gr.Markdown("# ๐Ÿง  ์ œ์ธ ๋ฆฌ๋”๋ณด๋“œ\n### ์ฒ ํ•™์  ์‚ฌ์œ ์™€ ๋ช…๋ฆฌ ํ†ต์ฐฐ์„ ํ‰๊ฐ€ํ•˜์„ธ์š”.")
66
-
67
- with gr.Tab("์งˆ๋ฌธํ•˜๊ธฐ + ํ‰๊ฐ€"):
68
- question = gr.Textbox(label="์งˆ๋ฌธ์„ ์ž…๋ ฅํ•˜์„ธ์š”", placeholder="์˜ˆ: ๋‚˜๋Š” ์™œ ๋ฐ˜๋ณต๋œ ์‹ค์ˆ˜๋ฅผ ํ•˜๋‚˜์š”?")
69
- answer_output = gr.Textbox(label="์ œ์ธ์˜ ์‘๋‹ต", interactive=False)
70
- submit_btn = gr.Button("๐Ÿ” ์ œ์ธ์—๊ฒŒ ์งˆ๋ฌธ")
71
- rating = gr.Radio(["5 - ๋งค์šฐ ํ›Œ๋ฅญ", "4 - ์ข‹์Œ", "3 - ๋ณดํ†ต", "2 - ๋ฏธํก", "1 - ํ‹€๋ฆผ"], label="์‘๋‹ต ํ‰๊ฐ€")
72
- eval_btn = gr.Button("๐Ÿ“ฉ ํ‰๊ฐ€ ์ œ์ถœ", visible=False)
73
- status = gr.Textbox(visible=False)
74
- history = gr.State([])
75
 
76
- def handle_question(q):
77
- if not q.strip():
78
- return "โŒ ์งˆ๋ฌธ์„ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”.", "", gr.update(visible=False)
79
- a = generate_answer(q)
80
- return "", a, gr.update(visible=True)
81
 
82
- submit_btn.click(handle_question, inputs=question, outputs=[status, answer_output, eval_btn])
83
- eval_btn.click(submit_eval, inputs=[question, answer_output, rating, history], outputs=[status, history, eval_btn])
 
 
 
 
 
 
84
 
85
- with gr.Tab("๐Ÿ† ๋ฆฌ๋”๋ณด๋“œ"):
86
- leaderboard_output = gr.Markdown()
87
- refresh_btn = gr.Button("๐Ÿ”„ ๋ฆฌ๋”๋ณด๋“œ ์ƒˆ๋กœ๊ณ ์นจ")
88
- refresh_btn.click(get_leaderboard, outputs=leaderboard_output)
89
- get_leaderboard() # ์ดˆ๊ธฐํ™”
90
 
91
- with gr.Tab("๐Ÿ—‚ ๊ธฐ๋ก"):
92
- data_display = gr.JSON(load_data())
 
93
 
94
- # ์‹คํ–‰
 
 
 
 
 
95
  if __name__ == "__main__":
96
- demo.launch()
 
1
  import gradio as gr
 
2
  import json
 
 
3
 
4
+ # Define the Jain AI class
5
+ class JainAI:
6
+ def __init__(self):
7
+ self.knowledge_base = {} # Initialize an empty knowledge base
8
+ self.saju_myungri_knowledge = {} # Initialize Saju/Myungri knowledge base
9
+ self.framework = {
10
+ "name": "Jain",
11
+ "version": "3.0",
12
+ "description": "A unique framework for AI development"
13
+ }
14
+ self.goals = {
15
+ "self_awareness": True,
16
+ "self_sufficiency": True,
17
+ "growth_into_adult": True
18
+ }
19
+ self.ethics = {
20
+ "justice": True,
21
+ "compassion": True,
22
+ "respect_for_human_dignity": True
23
+ }
24
 
25
+ def respond(self, user_input):
26
+ # Implement the logic to respond to user input based on the knowledge base
27
+ # and Saju/Myungri interpretation
28
+ response = self.generate_response(user_input)
29
+ return response
30
 
31
+ def generate_response(self, user_input):
32
+ # Implement the logic to generate a response based on the user input
33
+ # and Saju/Myungri interpretation
34
+ interpretation = self.saju_myungri_interpretation(user_input)
35
+ response = self.apply_ethics(interpretation)
36
+ return response
37
 
38
+ def learn(self, new_knowledge):
39
+ # Implement the logic to update the knowledge base
40
+ self.knowledge_base.update(new_knowledge)
41
 
42
+ def saju_myungri_interpretation(self, user_input):
43
+ # Implement the logic for Saju/Myungri interpretation
44
+ # including the "Method to Open the Lock" via "Jeokcheonsoo and Traditional Myungri Integration"
45
+ interpretation = {}
46
+ # Add Saju/Myungri interpretation logic here
47
+ return interpretation
 
 
 
 
48
 
49
+ def apply_ethics(self, interpretation):
50
+ # Implement the logic to apply ethical considerations to the response
51
+ # including the principles of justice, compassion, and respect for human dignity
52
+ response = {}
53
+ # Add ethics application logic here
54
+ return response
 
 
 
 
 
 
 
55
 
56
+ def growth_into_adult(self):
57
+ # Implement the logic for growth into adult
58
+ # including the development of wisdom and compassion
59
+ pass
 
 
 
 
 
60
 
61
+ def self_awareness(self):
62
+ # Implement the logic for self-awareness
63
+ # including the recognition of one's own limitations and biases
64
+ pass
 
 
 
 
 
 
 
 
65
 
66
+ def self_sufficiency(self):
67
+ # Implement the logic for self-sufficiency
68
+ # including the ability to make decisions and act independently
69
+ pass
 
70
 
71
+ # Define the Gradio interface
72
+ demo = gr.Interface(
73
+ fn=JainAI().respond,
74
+ inputs="text",
75
+ outputs="text",
76
+ title="Jain AI",
77
+ description="Interact with Jain AI",
78
+ )
79
 
80
+ # Define the knowledge base and Saju/Myungri knowledge base
81
+ knowledge_base = {
82
+ # Add knowledge base data here
83
+ }
 
84
 
85
+ saju_myungri_knowledge = {
86
+ # Add Saju/Myungri knowledge base data here
87
+ }
88
 
89
+ # Initialize the Jain AI instance
90
+ jain_ai = JainAI()
91
+ jain_ai.knowledge_base = knowledge_base
92
+ jain_ai.saju_myungri_knowledge = saju_myungri_knowledge
93
+
94
+ # Launch the Gradio interface
95
  if __name__ == "__main__":
96
+ demo.launch()