Spaces:
Runtime error
Runtime error
Update qabot.py
Browse files
qabot.py
CHANGED
@@ -5,70 +5,61 @@ from langchain.chains import RetrievalQA
|
|
5 |
from langchain_community.embeddings import GPT4AllEmbeddings
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
|
8 |
-
|
9 |
# !pip install llama-cpp-python
|
10 |
|
11 |
-
from llama_cpp import Llama
|
12 |
|
13 |
-
model_file = Llama.from_pretrained(
|
14 |
-
|
15 |
-
|
16 |
-
)
|
17 |
-
|
18 |
-
# model_file = hf_hub_download(
|
19 |
-
# repo_id="Pudding48/TinyLlamaTest", # Replace with your model repo
|
20 |
-
# filename="tinyllama-1.1b-chat-v1.0.Q8_0.gguf",
|
21 |
-
# cache_dir="model" # Will be created in the Space's environment
|
22 |
# )
|
23 |
|
24 |
-
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
26 |
vector_dp_path = "vectorstores/db_faiss"
|
27 |
|
28 |
-
# Load LLM
|
29 |
def load_llm(model_file):
|
30 |
-
|
31 |
model=model_file,
|
32 |
model_type="llama",
|
33 |
temperature=0.01,
|
34 |
config={'gpu_layers': 0},
|
35 |
-
max_new_tokens=128,
|
36 |
context_length=512
|
37 |
)
|
38 |
-
return llm
|
39 |
|
40 |
-
#
|
41 |
def creat_prompt(template):
|
42 |
-
|
43 |
-
return prompt
|
44 |
|
45 |
-
#
|
46 |
def create_qa_chain(prompt, llm, db):
|
47 |
-
|
48 |
-
llm
|
49 |
-
chain_type
|
50 |
-
retriever
|
51 |
-
return_source_documents
|
52 |
-
chain_type_kwargs={'prompt':prompt}
|
53 |
)
|
54 |
-
return llm_chain
|
55 |
|
|
|
56 |
def read_vector_db():
|
57 |
-
embedding_model = GPT4AllEmbeddings(model_file
|
58 |
-
|
59 |
-
return db
|
60 |
|
|
|
61 |
db = read_vector_db()
|
62 |
llm = load_llm(model_file)
|
63 |
-
|
64 |
template = """<|im_start|>system\nSử dụng thông tin sau đây để trả lời câu hỏi. Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời\n
|
65 |
-
|
66 |
|
67 |
-
# Khởi tạo các thành phần
|
68 |
prompt = creat_prompt(template)
|
69 |
-
llm_chain
|
70 |
-
|
71 |
-
# Chạy thử chain
|
72 |
-
question = "Khoa công nghệ thông tin thành lập năm nào ?"
|
73 |
-
response = llm_chain.invoke({"query": question})
|
74 |
-
print(response)
|
|
|
5 |
from langchain_community.embeddings import GPT4AllEmbeddings
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
# !pip install llama-cpp-python
|
10 |
|
11 |
+
# from llama_cpp import Llama
|
12 |
|
13 |
+
# model_file = Llama.from_pretrained(
|
14 |
+
# repo_id="Pudding48/TinyLLamaTest",
|
15 |
+
# filename="tinyllama-1.1b-chat-v1.0.Q8_0.gguf",
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# )
|
17 |
|
18 |
+
model_file = hf_hub_download(
|
19 |
+
repo_id="Pudding48/TinyLlamaTest", # 🟢 This must be a model repo, not a Space
|
20 |
+
filename="tinyllama-1.1b-chat-v1.0.Q8_0.gguf",
|
21 |
+
cache_dir="model"
|
22 |
+
)
|
23 |
+
|
24 |
+
# Vector store location
|
25 |
vector_dp_path = "vectorstores/db_faiss"
|
26 |
|
27 |
+
# Load LLM with CTransformers
|
28 |
def load_llm(model_file):
|
29 |
+
return CTransformers(
|
30 |
model=model_file,
|
31 |
model_type="llama",
|
32 |
temperature=0.01,
|
33 |
config={'gpu_layers': 0},
|
34 |
+
max_new_tokens=128,
|
35 |
context_length=512
|
36 |
)
|
|
|
37 |
|
38 |
+
# Create the prompt
|
39 |
def creat_prompt(template):
|
40 |
+
return PromptTemplate(template=template, input_variables=["context", "question"])
|
|
|
41 |
|
42 |
+
# Create QA pipeline
|
43 |
def create_qa_chain(prompt, llm, db):
|
44 |
+
return RetrievalQA.from_chain_type(
|
45 |
+
llm=llm,
|
46 |
+
chain_type="stuff",
|
47 |
+
retriever=db.as_retriever(search_kwargs={"k": 1}),
|
48 |
+
return_source_documents=False,
|
49 |
+
chain_type_kwargs={'prompt': prompt}
|
50 |
)
|
|
|
51 |
|
52 |
+
# Load vector DB
|
53 |
def read_vector_db():
|
54 |
+
embedding_model = GPT4AllEmbeddings(model_file=model_file)
|
55 |
+
return FAISS.load_local(vector_dp_path, embedding_model, allow_dangerous_deserialization=True)
|
|
|
56 |
|
57 |
+
# Build everything
|
58 |
db = read_vector_db()
|
59 |
llm = load_llm(model_file)
|
60 |
+
|
61 |
template = """<|im_start|>system\nSử dụng thông tin sau đây để trả lời câu hỏi. Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời\n
|
62 |
+
{context}<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant"""
|
63 |
|
|
|
64 |
prompt = creat_prompt(template)
|
65 |
+
llm_chain = create_qa_chain(prompt, llm, db)
|
|
|
|
|
|
|
|
|
|