Spaces:
Sleeping
Sleeping
File size: 12,586 Bytes
0097003 a0dfdc4 183aa58 7eb5f41 23b607a 183aa58 07f2498 6e53660 3a2ae2d 877bcf1 5cd86ec 183aa58 ee078cd 183aa58 0097003 07f2498 0097003 183aa58 b774e3c 6e53660 877bcf1 0097003 23f13e6 183aa58 23b607a 0097003 23b607a 183aa58 7eb5f41 791ecaf 207f92d b774e3c eca81bf 183aa58 0097003 183aa58 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 32d9ffc 0097003 32d9ffc 0097003 32d9ffc 183aa58 0097003 7eb5f41 0097003 7eb5f41 183aa58 b774e3c 183aa58 0097003 183aa58 0097003 183aa58 0097003 07f2498 0097003 07f2498 0097003 07f2498 8c30d30 2a4c58e 49deb85 07f2498 3a2ae2d 0097003 3a2ae2d 0097003 3a2ae2d 0097003 3a2ae2d 0097003 3a2ae2d 183aa58 7a01365 2a37fbd 183aa58 0097003 8c5f02c 9064672 9b5e89e 183aa58 a3470c7 b774e3c 183aa58 0097003 791ecaf 5cd86ec 1e95dc3 5cd86ec 1e95dc3 6e53660 59c2301 6e53660 0097003 b362593 6e53660 0097003 6e53660 ce1491a 6e53660 ce1491a 183aa58 877bcf1 0097003 877bcf1 0097003 877bcf1 0097003 877bcf1 183aa58 0097003 183aa58 7eb5f41 183aa58 bc23581 183aa58 d48b815 a3470c7 0097003 2a4c58e b774e3c 207f92d b774e3c eca81bf b774e3c 183aa58 d48b815 161a82d 7e5ccd3 2ff3fff 207f92d 877bcf1 eca81bf 877bcf1 183aa58 791ecaf 6e53660 eca81bf 791ecaf 3a2ae2d 4c1e97c 3a2ae2d 2ff3fff 3a2ae2d eca81bf b774e3c 0097003 09f4099 9b5e89e 6d76a3b 0097003 9b5e89e 207f92d 9b5e89e 9064672 791ecaf 9b5e89e 07f2498 0097003 d2c615b 0097003 471c1e2 07f2498 183aa58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import spaces
import os
import gradio as gr
import trafilatura
from trafilatura import fetch_url, extract
from markitdown import MarkItDown
import torch
import soundfile as sf
import numpy as np
from langdetect import detect
from kokoro import KPipeline
import re
import json
import nltk
import stanza
from transformers import BartForConditionalGeneration, BartTokenizer
from nltk.tokenize import sent_tokenize
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from PIL import Image
import io
from gliner import GLiNER
import tempfile
nltk.download("punkt")
nltk.download("punkt_tab")
stanza.download("en")
nlp = stanza.Pipeline("en", processors="tokenize,ner", use_gpu=False)
kokoro_tts = KPipeline(lang_code='a', device="cpu")
# Supported TTS Languages
SUPPORTED_TTS_LANGUAGES = {
"en": "a", # English (default)
"fr": "f", # French
"hi": "h", # Hindi
"it": "i", # Italian
"pt": "p", # Brazilian Portuguese
}
# Available voices in KokoroTTS
AVAILABLE_VOICES = [
'af_bella', 'af_sarah', 'am_adam', 'am_michael', 'bf_emma',
'bf_isabella', 'bm_george', 'bm_lewis', 'af_nicole', 'af_sky'
]
# Load BART Large CNN Model for Summarization
model_name = "facebook/bart-large-cnn"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
# Initialize GLINER model
gliner_model = GLiNER.from_pretrained("urchade/gliner_base")
def fetch_and_display_content(url):
"""Fetch and extract text from a given URL (HTML or PDF)."""
if url.endswith(".pdf") or "pdf" in url:
converter = MarkItDown()
text = converter.convert(url).text_content
else:
downloaded = trafilatura.fetch_url(url)
text = extract(downloaded, output_format="markdown", with_metadata=True, include_tables=False, include_links=False, include_formatting=True, include_comments=False) #without metadata extraction
metadata, cleaned_text = extract_and_clean_text(text)
detected_lang = detect_language(cleaned_text)
# Add detected language to metadata
metadata["Detected Language"] = detected_lang.upper()
return cleaned_text, metadata, detected_lang, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def extract_and_clean_text(data):
metadata_dict = {}
# Step 1: Extract metadata enclosed between "---" at the beginning
metadata_pattern = re.match(r"^---(.*?)---", data, re.DOTALL)
if metadata_pattern:
metadata_raw = metadata_pattern.group(1).strip()
data = data[metadata_pattern.end():].strip() # Remove metadata from text
metadata_lines = metadata_raw.split("\n")
for line in metadata_lines:
if ": " in line:
key, value = line.split(": ", 1) # Split at first ": "
if value.startswith("[") and value.endswith("]"):
try:
value = json.loads(value)
except json.JSONDecodeError:
pass
metadata_dict[key.strip()] = value.strip()
#Step 2: Remove everything before the "Abstract" section
def remove_text_before_abstract(text):
"""Removes all text before the first occurrence of 'Abstract'."""
abstract_pattern = re.compile(r"(?i)\babstract\b")
match = abstract_pattern.search(text)
if match:
return text[match.start():]
return text
data = remove_text_before_abstract(data)
# Step 3: Clean the extracted text
def clean_text(text):
text = re.sub(r'\[\d+\]', '', text)
text = re.sub(r'http[s]?://\S+', '', text)
text = re.sub(r'\[.*?\]\(http[s]?://\S+\)', '', text)
patterns = [r'References\b.*', r'Bibliography\b.*', r'External Links\b.*', r'COMMENTS\b.*']
for pattern in patterns:
text = re.sub(pattern, '', text, flags=re.IGNORECASE | re.DOTALL)
text = re.sub(r'\n\s*\n+', '\n\n', text).strip()
return text
return metadata_dict, clean_text(data)
### 3️⃣ Language Detection
def detect_language(text):
try:
lang = detect(text)
return lang if lang in SUPPORTED_TTS_LANGUAGES else "en" # Default to English if not supported
except:
return "en"
#Not using this one below. Using Gliner
def extract_entities_with_stanza(text, chunk_size=1000):
"""Splits text into chunks, runs Stanza NER, and combines results."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
if current_length + len(sentence) > chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
current_length = len(sentence)
else:
current_chunk.append(sentence)
current_length += len(sentence)
if current_chunk:
chunks.append(" ".join(current_chunk))
entities = []
for chunk in chunks:
doc = nlp(chunk)
for ent in doc.ents:
entities.append({"text": ent.text, "type": ent.type})
formatted_entities = "\n".join([f"{i+1}: {ent['text']} --> {ent['type']}" for i, ent in enumerate(entities)])
return formatted_entities
return entities
def generate_wordcloud(text):
if not text:
return None
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
plt.close()
image = Image.open(buf)
return image
### 4️⃣ TTS Functionality (KokoroTTS)
@spaces.GPU(duration=1000)
def generate_audio_kokoro(text, lang, selected_voice):
"""Generate speech using KokoroTTS for supported languages."""
global kokoro_tts
if os.path.exists(f"audio_{lang}.wav"):
os.remove(f"audio_{lang}.wav")
lang_code = SUPPORTED_TTS_LANGUAGES.get(lang, "a") # Default to English
#generator = kokoro_tts(text, voice="bm_george", speed=1, split_pattern=r'\n+')
generator = kokoro_tts(text, voice=selected_voice, speed=1, split_pattern=r'\n+')
audio_data_list = [audio for _, _, audio in generator]
full_audio = np.concatenate(audio_data_list)
# Save to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
sf.write(temp_file, full_audio, 24000, format='wav')
temp_file_path = temp_file.name
print("Audio generated successfully.")
return temp_file_path
### 5️⃣ Chunk-Based Summarization
def split_text_with_optimized_overlap(text, max_tokens=1024, overlap_tokens=25):
"""Splits text into optimized overlapping chunks."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
previous_chunk_text = ""
for sentence in sentences:
tokenized_sentence = tokenizer.encode(sentence, add_special_tokens=False)
token_length = len(tokenized_sentence)
if current_length + token_length > max_tokens:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
previous_chunk_text = " ".join(current_chunk)[-overlap_tokens:]
current_chunk = [sentence]
current_length = token_length
else:
current_chunk.append(sentence)
current_length += token_length
if current_chunk:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
return chunks
def summarize_text(text, max_input_tokens=1024, max_output_tokens=200):
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=max_input_tokens, truncation=True)
summary_ids = model.generate(inputs, max_length=max_output_tokens, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def hierarchical_summarization(text):
chunks = split_text_with_optimized_overlap(text)
chunk_summaries = [summarize_text(chunk) for chunk in chunks]
final_summary = " ".join(chunk_summaries)
return final_summary
def extract_entities_with_gliner(text, default_entity_types, custom_entity_types):
"""
Extract entities using GLINER with default and custom entity types.
"""
entity_types = default_entity_types.split(",") + [etype.strip() for etype in custom_entity_types.split(",") if custom_entity_types]
entity_types = list(set([etype.strip() for etype in entity_types if etype.strip()]))
entities = gliner_model.predict_entities(text, entity_types)
formatted_entities = "\n".join([f"{i+1}: {ent['text']} --> {ent['label']}" for i, ent in enumerate(entities)])
return formatted_entities
### 5️⃣ Main Processing Function
def process_url(url):
content = fetch_content(url)
metadata,cleaned_text = extract_and_clean_text(content)
detected_lang = detect_language(cleaned_text)
audio_file = generate_audio_kokoro(cleaned_text, detected_lang)
return cleaned_text, detected_lang, audio_file
### 6️⃣ Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🌍 Web-to-Audio Converter 🎙️")
url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com/article")
voice_selection = gr.Dropdown(AVAILABLE_VOICES, label="Select Voice", value="bm_george")
tts_option = gr.Radio(["TTS based on Summary", "TTS based on Raw Data"], value="TTS based on Summary", label="Select TTS Source")
with gr.Row():
process_text_button = gr.Button("Fetch Text & Detect Language",scale = 1)
process_audio_button = gr.Button("Generate Audio", visible=False,scale = 1)
process_ner_button = gr.Button("Extract Entities", visible=False,scale = 1) # ✅ New button for NER
with gr.Row():
extracted_text = gr.Textbox(label="Extracted Content", visible=False, interactive=False, lines=15)
metadata_output = gr.JSON(label="Article Metadata", visible=False) # Displays metadata
wordcloud_output = gr.Image(label="Word Cloud", visible=False)
detected_lang = gr.Textbox(label="Detected Language", visible=False)
summary_output = gr.Textbox(label="Summary", visible=True, interactive=False)
full_audio_output = gr.Audio(label="Generated Audio", visible=True)
ner_output = gr.Textbox(label="Extracted Entities", visible=True, interactive=False)
default_entity_types = gr.Textbox(label="Default Entity Types", value="PERSON, Organization, location, Date, PRODUCT, EVENT", interactive=True)
custom_entity_types = gr.Textbox(label="Custom Entity Types", placeholder="Enter additional entity types (comma-separated)", interactive=True)
# Step 1: Fetch Text & Detect Language First
process_text_button.click(
fetch_and_display_content,
inputs=[url_input],
outputs=[extracted_text, metadata_output, detected_lang, wordcloud_output, process_audio_button,process_ner_button, extracted_text, metadata_output]
)
# Automatically generate word cloud when extracted_text changes
extracted_text.change(
generate_wordcloud,
inputs=[extracted_text],
outputs=[wordcloud_output],
show_progress=True
)
extracted_text.change(
hierarchical_summarization,
inputs=[extracted_text],
outputs=[summary_output],
show_progress=True
)
process_audio_button.click(
lambda text, summary, lang, voice, tts_choice: (
None, # Clear previous audio
generate_audio_kokoro(
summary if tts_choice == "TTS based on Summary" else text, lang, voice
)
),
inputs=[extracted_text, summary_output, detected_lang, voice_selection, tts_option],
outputs=[full_audio_output, full_audio_output], # Clear first, then display new audio
show_progress=True
)
process_ner_button.click(
extract_entities_with_gliner,
inputs=[extracted_text, default_entity_types, custom_entity_types],
outputs=[ner_output]
)
demo.launch()
|