File size: 8,463 Bytes
a0dfdc4
 
183aa58
 
7eb5f41
183aa58
7eb5f41
183aa58
 
 
 
 
 
 
 
 
 
 
 
a0dfdc4
 
183aa58
 
 
 
 
 
 
 
 
 
b774e3c
 
 
 
 
 
23f13e6
 
183aa58
 
7eb5f41
7e5ccd3
791ecaf
183aa58
 
7eb5f41
791ecaf
 
b774e3c
 
 
 
d48b815
5faac94
183aa58
 
 
7eb5f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183aa58
7eb5f41
 
 
 
 
 
 
 
791ecaf
 
7eb5f41
 
 
 
 
 
 
 
 
183aa58
 
b774e3c
7eb5f41
b774e3c
 
183aa58
 
 
 
 
 
 
 
 
 
 
7a01365
2a37fbd
183aa58
a0dfdc4
183aa58
b774e3c
 
183aa58
791ecaf
 
 
 
7eb5f41
791ecaf
7eb5f41
791ecaf
 
 
 
7eb5f41
 
 
791ecaf
183aa58
a30ee88
183aa58
 
 
 
 
 
7eb5f41
183aa58
 
 
bc23581
183aa58
 
 
 
 
 
d48b815
b774e3c
 
791ecaf
 
b774e3c
 
 
 
 
 
183aa58
b774e3c
d48b815
 
7e5ccd3
183aa58
791ecaf
 
 
 
b774e3c
5faac94
 
791ecaf
b774e3c
791ecaf
 
 
b774e3c
2a37fbd
5faac94
 
791ecaf
 
 
 
183aa58
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import spaces  # Import spaces first to avoid CUDA initialization issues
import os
import gradio as gr
import trafilatura
from trafilatura import fetch_url, extract
import docling
from docling.document_converter import DocumentConverter
import torch
import soundfile as sf
import numpy as np
from langdetect import detect
from kokoro import KPipeline
import re
import json
import nltk

nltk.download("punkt")

# Initialize KokoroTTS with default English
#kokoro_tts = KPipeline(lang_code='a')  # 'a' is for American English
kokoro_tts = KPipeline(lang_code='a', device="cpu")  # Load initially on CPU

# Supported TTS Languages
SUPPORTED_TTS_LANGUAGES = {
    "en": "a",  # English (default)
    "fr": "f",  # French
    "hi": "h",  # Hindi
    "it": "i",  # Italian
    "pt": "p",  # Brazilian Portuguese
}

# Available voices in KokoroTTS
AVAILABLE_VOICES = [
    'af_bella', 'af_sarah', 'am_adam', 'am_michael', 'bf_emma',
    'bf_isabella', 'bm_george', 'bm_lewis', 'af_nicole', 'af_sky'
]

### 1️⃣ Fetch and Extract Content (Runs Immediately)
def fetch_and_display_content(url):
    """Fetch and extract text from a given URL (HTML or PDF)."""
    if url.endswith(".pdf") or "pdf" in url:
        converter = DocumentConverter()
        #result = converter.convert(source)
        text = converter.convert(url).document.export_to_markdown()
    else:
        downloaded = trafilatura.fetch_url(url)
        text = extract(downloaded, output_format="markdown", with_metadata=True, include_tables=False, include_links=False, include_formatting=True, include_comments=False) #without metadata extraction
    metadata, cleaned_text = extract_and_clean_text(text)
    detected_lang = detect_language(cleaned_text)

    # Add detected language to metadata
    metadata["Detected Language"] = detected_lang.upper()
    #return cleaned_text, detected_lang, gr.update(visible=True), gr.update(visible=True)
    #return cleaned_text, metadata, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    return cleaned_text, metadata, detected_lang, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

### 2️⃣ Cleaning Function
def extract_and_clean_text(data):
    
    metadata_dict = {}

    # Step 1: Extract metadata enclosed between "---" at the beginning
    metadata_pattern = re.match(r"^---(.*?)---", data, re.DOTALL)
    
    if metadata_pattern:
        metadata_raw = metadata_pattern.group(1).strip()
        data = data[metadata_pattern.end():].strip()  # Remove metadata from text

        # Convert metadata into dictionary format manually (since YAML isn't reliable)
        metadata_lines = metadata_raw.split("\n")
        for line in metadata_lines:
            if ": " in line:  # Only process lines with key-value pairs
                key, value = line.split(": ", 1)  # Split at first ": "
                
                # Convert lists (wrapped in square brackets) into Python lists
                if value.startswith("[") and value.endswith("]"):
                    try:
                        value = json.loads(value)  # Convert to list
                    except json.JSONDecodeError:
                        pass  # If JSON parsing fails, keep it as a string
                
                metadata_dict[key.strip()] = value.strip()  # Store cleaned key-value pair

    # Step 2: Clean the extracted text
    def clean_text(text):
        # Remove inline citations like [2][4]
        text = re.sub(r'\[\d+\]', '', text)

        # Remove URLs (both direct links and markdown-style links)
        text = re.sub(r'http[s]?://\S+', '', text)  # Direct links
        text = re.sub(r'\[.*?\]\(http[s]?://\S+\)', '', text)  # Markdown links

        # Remove markdown-style headings and special characters (#, ##, *, etc.)
        #text = re.sub(r'^\s*#+\s*', '', text, flags=re.MULTILINE)  # Remove headings
        #text = re.sub(r'[*_`]', '', text)  # Remove bold/italic/monospace markers
        
        # Remove References, Bibliography, External Links, and Comments sections
        patterns = [r'References\b.*', r'Bibliography\b.*', r'External Links\b.*', r'COMMENTS\b.*']
        for pattern in patterns:
            text = re.sub(pattern, '', text, flags=re.IGNORECASE | re.DOTALL)

        # Remove extra whitespace and newlines
        text = re.sub(r'\n\s*\n+', '\n\n', text).strip()
        
        return text

    #cleaned_text = clean_text(data)

    #return metadata_dict, cleaned_text
    return metadata_dict, clean_text(data)

### 3️⃣ Language Detection
def detect_language(text):
    """Detects the language of extracted text."""
    try:
        lang = detect(text)
        return lang if lang in SUPPORTED_TTS_LANGUAGES else "en"  # Default to English if not supported
    except:
        return "en"  # Default to English if detection fails

### 4️⃣ TTS Functionality (KokoroTTS)
@spaces.GPU(duration=1000)  
def generate_audio_kokoro(text, lang, selected_voice):
    """Generate speech using KokoroTTS for supported languages."""
    global kokoro_tts  # Access the preloaded model
    lang_code = SUPPORTED_TTS_LANGUAGES.get(lang, "a")  # Default to English
    #generator = kokoro_tts(text, voice="af_bella", speed=1, split_pattern=r'\n+')
    generator = kokoro_tts(text, voice=selected_voice, speed=1, split_pattern=r'\n+')

    # Generate and collect audio data
    audio_data_list = [audio for _, _, audio in generator]
    full_audio = np.concatenate(audio_data_list)
    
    # Initialize an empty list to store audio data
    #audio_data_list = []
    # Generate and collect audio data
    #for i, (gs, ps, audio) in enumerate(generator):
    #    print(f"Processing segment {i + 1}")
    #    print(gs)  # Print the text segment
    #    audio_data_list.append(audio)  # Append audio data to the list

# Concatenate all audio data into a single array
    full_audio = np.concatenate(audio_data_list)
       
    output_file = f"audio_{lang}.wav"
    sf.write(output_file, full_audio, 24000)  # Save as WAV file
    return output_file

### 5️⃣ Main Processing Function
def process_url(url):
    """Processes the URL, extracts text, detects language, and converts to audio."""
    content = fetch_content(url)
    metadata,cleaned_text = extract_and_clean_text(content)
    detected_lang = detect_language(cleaned_text)
    audio_file = generate_audio_kokoro(cleaned_text, detected_lang)

    return cleaned_text, detected_lang, audio_file

### 6️⃣ Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# 🌍 Web-to-Audio Converter 🎙️")
    
    url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com/article")
    
    voice_selection = gr.Dropdown(AVAILABLE_VOICES, label="Select Voice", value="af_bella")

    process_text_button = gr.Button("Fetch Text & Detect Language")
    process_audio_button = gr.Button("Generate Audio", visible=False)

    # Layout: Two adjacent columns (Text and Metadata)
    with gr.Row():
        extracted_text = gr.Textbox(label="Extracted Content", visible=False, interactive=False, lines=15)
        metadata_output = gr.JSON(label="Article Metadata", visible=False)  # Displays metadata

    
    #extracted_text = gr.Markdown(label="Extracted Content")
   
    detected_lang = gr.Textbox(label="Detected Language", visible=False)
    full_audio_output = gr.Audio(label="Generated Audio", visible=True)

    # Step 1: Fetch Text & Detect Language First
    process_text_button.click(
        fetch_and_display_content, 
        inputs=[url_input], 
        #outputs=[extracted_text, detected_language, process_audio_button, extracted_text]
        #outputs=[extracted_text, metadata_output, process_audio_button, extracted_text, metadata_output]
        outputs=[extracted_text, metadata_output, detected_lang, process_audio_button, extracted_text, metadata_output]
    )
    
    # Step 2: Generate Audio After Text & Language Are Displayed
    process_audio_button.click(
        generate_audio_kokoro, 
        #inputs=[extracted_text, detected_language], 
        #inputs=[extracted_text, metadata_output, voice_selection],
        #inputs=[extracted_text, metadata_output["Detected Language"], voice_selection], 
        inputs=[extracted_text, detected_lang, voice_selection],
        outputs=[full_audio_output]
    )

    #process_button.click(process_url, inputs=[url_input], outputs=[extracted_text, detected_language, full_audio_output])

demo.launch()