Spaces:
Sleeping
Sleeping
File size: 16,262 Bytes
0097003 a0dfdc4 183aa58 7eb5f41 23b607a 183aa58 07f2498 6e53660 3a2ae2d 392490b 877bcf1 5cd86ec 183aa58 ee078cd 183aa58 8b12154 183aa58 b774e3c 6e53660 392490b 8b12154 392490b 6e53660 877bcf1 392490b 23f13e6 392490b 183aa58 392490b 791ecaf 207f92d b774e3c 392490b c94e9c4 392490b 183aa58 0097003 183aa58 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 0097003 7eb5f41 32d9ffc 0097003 32d9ffc 0097003 32d9ffc 183aa58 0097003 7eb5f41 0097003 7eb5f41 183aa58 b774e3c 183aa58 0097003 183aa58 0097003 183aa58 0097003 07f2498 0097003 07f2498 0097003 07f2498 8c30d30 2a4c58e 49deb85 07f2498 3a2ae2d 0097003 392490b 3a2ae2d 392490b 3a2ae2d 0097003 3a2ae2d 183aa58 7a01365 2a37fbd 183aa58 0097003 9b5e89e 183aa58 b774e3c 183aa58 0097003 791ecaf 5cd86ec 1e95dc3 5cd86ec 1e95dc3 6e53660 59c2301 6e53660 0097003 b362593 6e53660 8b12154 6e53660 392490b 8b12154 392490b 6e53660 392490b 8b12154 392490b ce1491a 392490b ce1491a 392490b 183aa58 392490b 877bcf1 392490b 877bcf1 392490b 877bcf1 392490b 877bcf1 183aa58 0097003 183aa58 7eb5f41 183aa58 bc23581 183aa58 d48b815 a3470c7 0097003 2a4c58e b774e3c 207f92d b774e3c eca81bf b774e3c 183aa58 d48b815 161a82d 7e5ccd3 2ff3fff 8b12154 877bcf1 183aa58 791ecaf 6e53660 eca81bf 791ecaf 3a2ae2d 4c1e97c 3a2ae2d 2ff3fff 3a2ae2d eca81bf 392490b eca81bf 392490b eca81bf 392490b eca81bf b774e3c 392490b 09f4099 9b5e89e 6d76a3b 0097003 9b5e89e 207f92d 9b5e89e 9064672 791ecaf 392490b 07f2498 0097003 d2c615b 0097003 8b12154 07f2498 392490b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import spaces
import os
import gradio as gr
import trafilatura
from trafilatura import fetch_url, extract
from markitdown import MarkItDown
import torch
import soundfile as sf
import numpy as np
from langdetect import detect
from kokoro import KPipeline
import re
import json
import nltk
import stanza
from transformers import BartForConditionalGeneration, BartTokenizer
from nltk.tokenize import sent_tokenize
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from PIL import Image
import io
import requests
from gliner import GLiNER
import tempfile
nltk.download("punkt")
nltk.download("punkt_tab")
kokoro_tts = KPipeline(lang_code='a')
# Supported TTS Languages
SUPPORTED_TTS_LANGUAGES = {
"en": "a", # English (default)
"fr": "f", # French
"hi": "h", # Hindi
"it": "i", # Italian
"pt": "p", # Brazilian Portuguese
}
# Available voices in KokoroTTS
AVAILABLE_VOICES = [
'af_bella', 'af_sarah', 'am_adam', 'am_michael', 'bf_emma',
'bf_isabella', 'bm_george', 'bm_lewis', 'af_nicole', 'af_sky'
]
# Load BART Large CNN Model for Summarization
model_name = "facebook/bart-large-cnn"
try:
tokenizer = BartTokenizer.from_pretrained(model_name, cache_dir=os.path.join(os.getcwd(), ".cache"))
model = BartForConditionalGeneration.from_pretrained(model_name, cache_dir=os.path.join(os.getcwd(), ".cache"))
except Exception as e:
raise RuntimeError(f"Error loading BART model: {e}")
# Initialize GLINER model
gliner_model = GLiNER.from_pretrained("urchade/gliner_base")
def is_pdf_url(url):
"""Robustly detects PDF files via URL patterns and Content-Type headers."""
# URL Pattern Check
if url.endswith(".pdf") or "pdf" in url.lower():
return True
# Check Content-Type Header (for URLs without '.pdf')
try:
response = requests.head(url, timeout=10)
content_type = response.headers.get('Content-Type', '')
if 'application/pdf' in content_type:
return True
except requests.RequestException:
pass # Ignore errors in Content-Type check
return False
def fetch_and_display_content(url):
"""
Fetch and extract text from a given URL (HTML or PDF).
Extract metadata, clean text, and detect language.
"""
downloaded = trafilatura.fetch_url(url)
if not downloaded:
raise ValueError(f"β Failed to fetch content from URL: {url}")
if is_pdf_url(url):
converter = MarkItDown(enable_plugins=False)
try:
text = converter.convert(url).text_content
except Exception as e:
raise RuntimeError(f"β Error converting PDF with MarkItDown: {e}")
else:
text = extract(downloaded, output_format="markdown", with_metadata=True, include_tables=False, include_links=False, include_formatting=True, include_comments=False)
if not text or len(text.strip()) == 0:
raise ValueError("β No content found in the extracted data.")
metadata, cleaned_text = extract_and_clean_text(text)
detected_lang = detect_language(cleaned_text)
# Add detected language to metadata
metadata["Detected Language"] = detected_lang.upper()
return (
cleaned_text,
metadata,
detected_lang,
gr.update(visible=True), # Show Word Cloud
gr.update(visible=True), # Show Process Audio Button
gr.update(visible=True), # Show Process NER Button
gr.update(visible=True), # Show Extracted Text
gr.update(visible=True) # Show Metadata Output
)
def extract_and_clean_text(data):
metadata_dict = {}
# Step 1: Extract metadata enclosed between "---" at the beginning
metadata_pattern = re.match(r"^---(.*?)---", data, re.DOTALL)
if metadata_pattern:
metadata_raw = metadata_pattern.group(1).strip()
data = data[metadata_pattern.end():].strip() # Remove metadata from text
metadata_lines = metadata_raw.split("\n")
for line in metadata_lines:
if ": " in line:
key, value = line.split(": ", 1) # Split at first ": "
if value.startswith("[") and value.endswith("]"):
try:
value = json.loads(value)
except json.JSONDecodeError:
pass
metadata_dict[key.strip()] = value.strip()
#Step 2: Remove everything before the "Abstract" section
def remove_text_before_abstract(text):
"""Removes all text before the first occurrence of 'Abstract'."""
abstract_pattern = re.compile(r"(?i)\babstract\b")
match = abstract_pattern.search(text)
if match:
return text[match.start():]
return text
data = remove_text_before_abstract(data)
# Step 3: Clean the extracted text
def clean_text(text):
text = re.sub(r'\[\d+\]', '', text)
text = re.sub(r'http[s]?://\S+', '', text)
text = re.sub(r'\[.*?\]\(http[s]?://\S+\)', '', text)
patterns = [r'References\b.*', r'Bibliography\b.*', r'External Links\b.*', r'COMMENTS\b.*']
for pattern in patterns:
text = re.sub(pattern, '', text, flags=re.IGNORECASE | re.DOTALL)
text = re.sub(r'\n\s*\n+', '\n\n', text).strip()
return text
return metadata_dict, clean_text(data)
### 3οΈβ£ Language Detection
def detect_language(text):
try:
lang = detect(text)
return lang if lang in SUPPORTED_TTS_LANGUAGES else "en" # Default to English if not supported
except:
return "en"
#Not using this one below. Using Gliner
def extract_entities_with_stanza(text, chunk_size=1000):
"""Splits text into chunks, runs Stanza NER, and combines results."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
if current_length + len(sentence) > chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
current_length = len(sentence)
else:
current_chunk.append(sentence)
current_length += len(sentence)
if current_chunk:
chunks.append(" ".join(current_chunk))
entities = []
for chunk in chunks:
doc = nlp(chunk)
for ent in doc.ents:
entities.append({"text": ent.text, "type": ent.type})
formatted_entities = "\n".join([f"{i+1}: {ent['text']} --> {ent['type']}" for i, ent in enumerate(entities)])
return formatted_entities
return entities
def generate_wordcloud(text):
if not text.strip():
raise ValueError("β Text is empty or invalid for WordCloud generation.")
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
plt.close()
image = Image.open(buf)
return image
### 4οΈβ£ TTS Functionality (KokoroTTS)
@spaces.GPU(duration=1000)
def generate_audio_kokoro(text, lang, selected_voice):
"""Generate speech using KokoroTTS for supported languages."""
global kokoro_tts
lang_code = SUPPORTED_TTS_LANGUAGES.get(lang, "a") # Default to English
generator = kokoro_tts(text, voice=selected_voice, speed=1, split_pattern=r'\n+')
audio_data_list = [audio for _, _, audio in generator]
full_audio = np.concatenate(audio_data_list)
# Save to a temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
sf.write(temp_file, full_audio, 24000, format='wav')
temp_file_path = temp_file.name
print("Audio generated successfully.")
return temp_file_path
### 5οΈβ£ Chunk-Based Summarization
def split_text_with_optimized_overlap(text, max_tokens=1024, overlap_tokens=25):
"""Splits text into optimized overlapping chunks."""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
previous_chunk_text = ""
for sentence in sentences:
tokenized_sentence = tokenizer.encode(sentence, add_special_tokens=False)
token_length = len(tokenized_sentence)
if current_length + token_length > max_tokens:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
previous_chunk_text = " ".join(current_chunk)[-overlap_tokens:]
current_chunk = [sentence]
current_length = token_length
else:
current_chunk.append(sentence)
current_length += token_length
if current_chunk:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
return chunks
def summarize_text(text, max_input_tokens=1024, max_output_tokens=200):
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=max_input_tokens, truncation=True)
summary_ids = model.generate(inputs, max_length=max_output_tokens, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
@spaces.GPU(duration=1000)
def hierarchical_summarization(text):
"""Performs hierarchical summarization by chunking content first."""
#print(f"β
Summarization will run on: {DEVICE.upper()}")
if len(text) > 10000:
print("β οΈ Warning: Large input text detected. Summarization may take longer than usual.")
chunks = split_text_with_optimized_overlap(text)
#Tokenize the input cleaned text
encoded_inputs = tokenizer(
["summarize: " + chunk for chunk in chunks],
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024
)
#Generate the summary
summary_ids = model.generate(
encoded_inputs["input_ids"],
max_length=200,
min_length=50,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
#decode the summary generated in above step
chunk_summaries = [tokenizer.decode(ids, skip_special_tokens=True) for ids in summary_ids]
final_summary = " ".join(chunk_summaries)
return final_summary
def chunk_text_with_overlap(text, max_tokens=500, overlap_tokens=50):
"""Splits text into overlapping chunks for large document processing."""
sentences = re.split(r'(?<=[.!?])\s+', text) # Split on sentence boundaries
chunks = []
current_chunk = []
current_length = 0
previous_chunk_text = ""
for sentence in sentences:
token_length = len(sentence.split())
if current_length + token_length > max_tokens:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
previous_chunk_text = " ".join(current_chunk)[-overlap_tokens:]
current_chunk = [sentence]
current_length = token_length
else:
current_chunk.append(sentence)
current_length += token_length
if current_chunk:
chunks.append(previous_chunk_text + " " + " ".join(current_chunk))
return chunks
def extract_entities_with_gliner(text, default_entity_types, custom_entity_types, batch_size=4):
"""
Extract entities using GLINER with efficient chunking, sliding window, and batching.
"""
# Entity types preparation
entity_types = default_entity_types.split(",") + [
etype.strip() for etype in custom_entity_types.split(",") if custom_entity_types
]
entity_types = list(set([etype.strip() for etype in entity_types if etype.strip()]))
# Chunk the text to avoid overflow
chunks = chunk_text_with_overlap(text)
# Process each chunk individually for improved stability
all_entities = []
for i, chunk in enumerate(chunks):
try:
entities = gliner_model.predict_entities(chunk, entity_types)
all_entities.extend(entities)
except Exception as e:
print(f"β οΈ Error processing chunk {i}: {e}")
# Format the results
formatted_entities = "\n".join(
[f"{i+1}: {ent['text']} --> {ent['label']}" for i, ent in enumerate(all_entities)]
)
return formatted_entities
### 5οΈβ£ Main Processing Function
def process_url(url):
content = fetch_content(url)
metadata,cleaned_text = extract_and_clean_text(content)
detected_lang = detect_language(cleaned_text)
audio_file = generate_audio_kokoro(cleaned_text, detected_lang)
return cleaned_text, detected_lang, audio_file
### 6οΈβ£ Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# π Web-to-Audio Converter ποΈ")
url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com/article")
voice_selection = gr.Dropdown(AVAILABLE_VOICES, label="Select Voice", value="bm_george")
tts_option = gr.Radio(["TTS based on Summary", "TTS based on Raw Data"], value="TTS based on Summary", label="Select TTS Source")
with gr.Row():
process_text_button = gr.Button("Fetch Text & Detect Language",scale = 1)
process_audio_button = gr.Button("Generate Audio", visible=False,scale = 1)
process_ner_button = gr.Button("Extract Entities", visible=False,scale = 1) # β
New button for NER
with gr.Row():
extracted_text = gr.Textbox(label="Extracted Content", visible=False, interactive=False, lines=15)
metadata_output = gr.JSON(label="Article Metadata", visible=False) # Displays metadata
wordcloud_output = gr.Image(label="Word Cloud", visible=False)
detected_lang = gr.Textbox(label="Detected Language", visible=False)
summary_output = gr.Textbox(label="Summary", visible=True, interactive=False)
full_audio_output = gr.Audio(label="Generated Audio", visible=True)
ner_output = gr.Textbox(label="Extracted Entities", visible=True, interactive=False)
default_entity_types = gr.Textbox(label="Default Entity Types", value="PERSON, Organization, location, Date, PRODUCT, EVENT", interactive=True)
custom_entity_types = gr.Textbox(label="Custom Entity Types", placeholder="Enter additional entity types (comma-separated)", interactive=True)
# Step 1: Fetch Text & Detect Language First
process_text_button.click(
fetch_and_display_content,
inputs=[url_input],
outputs=[extracted_text, metadata_output, detected_lang, wordcloud_output, process_audio_button,process_ner_button, extracted_text, metadata_output]
)
# Automatically generate word cloud when extracted_text changes
extracted_text.change(
generate_wordcloud,
inputs=[extracted_text],
outputs=[wordcloud_output],
show_progress=True
)
# Step 3: Summarization (Generate Summary Before Enabling TTS Button)
def generate_summary_and_enable_tts(text):
summary = hierarchical_summarization(text)
return summary, gr.update(visible=True) # Enable the TTS button only after summary is generated
# Summarization
extracted_text.change(
generate_summary_and_enable_tts,
inputs=[extracted_text],
outputs=[summary_output, process_audio_button],
show_progress=True
)
# Audio Generation
process_audio_button.click(
lambda text, summary, lang, voice, tts_choice: (
None, # Clear previous audio
generate_audio_kokoro(
summary if tts_choice == "TTS based on Summary" else text, lang, voice
)
),
inputs=[extracted_text, summary_output, detected_lang, voice_selection, tts_option],
outputs=[full_audio_output, full_audio_output], # Clear first, then display new audio
show_progress=True
)
# NER Extraction
process_ner_button.click(
extract_entities_with_gliner,
inputs=[extracted_text, default_entity_types, custom_entity_types],
outputs=[ner_output]
)
demo.launch(share=True) |