Update utils.py
Browse files
utils.py
CHANGED
@@ -7,16 +7,23 @@ import subprocess
|
|
7 |
# Load Whisper model
|
8 |
model = whisper.load_model("base")
|
9 |
|
10 |
-
def process_video(
|
11 |
-
|
|
|
12 |
|
13 |
-
|
|
|
14 |
print("Converting video to MP4...")
|
15 |
-
subprocess.run(
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# Transcribe
|
19 |
-
print("Transcribing video
|
20 |
result = model.transcribe(output_video_path, language="en")
|
21 |
print("Transcription completed!")
|
22 |
|
@@ -25,7 +32,6 @@ def process_video(video_file, language):
|
|
25 |
if language == "English":
|
26 |
segments = result["segments"]
|
27 |
else:
|
28 |
-
# Define translation models
|
29 |
model_map = {
|
30 |
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
31 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
@@ -42,12 +48,11 @@ def process_video(video_file, language):
|
|
42 |
if not model_name:
|
43 |
return f"Unsupported language: {language}"
|
44 |
|
45 |
-
print(f"Loading translation model
|
46 |
if language == "Telugu":
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
49 |
tgt_lang = "tel_Telu"
|
50 |
-
print(f"Translating to Telugu using NLLB-200 Distilled...")
|
51 |
for segment in result["segments"]:
|
52 |
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
53 |
translated_tokens = translation_model.generate(
|
@@ -58,7 +63,6 @@ def process_video(video_file, language):
|
|
58 |
else:
|
59 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
60 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
61 |
-
print(f"Translating to {language}...")
|
62 |
for segment in result["segments"]:
|
63 |
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
64 |
translated = translation_model.generate(**inputs)
|
@@ -66,8 +70,6 @@ def process_video(video_file, language):
|
|
66 |
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
67 |
|
68 |
# Create SRT file
|
69 |
-
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
70 |
-
print(f"Creating SRT file at {srt_path}")
|
71 |
with open(srt_path, "w", encoding="utf-8") as f:
|
72 |
for i, segment in enumerate(segments, 1):
|
73 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
@@ -78,13 +80,14 @@ def process_video(video_file, language):
|
|
78 |
return srt_path
|
79 |
|
80 |
except subprocess.CalledProcessError as e:
|
81 |
-
|
|
|
82 |
except Exception as e:
|
83 |
-
|
|
|
84 |
finally:
|
85 |
# Clean up temporary files
|
86 |
-
print("Cleaning up temporary files...")
|
87 |
-
if os.path.exists(video_path):
|
88 |
-
os.remove(video_path)
|
89 |
if os.path.exists(output_video_path):
|
90 |
-
os.remove(output_video_path)
|
|
|
|
|
|
7 |
# Load Whisper model
|
8 |
model = whisper.load_model("base")
|
9 |
|
10 |
+
def process_video(video_path, language): # Accept file path, not file object
|
11 |
+
output_video_path = os.path.join(tempfile.gettempdir(), "converted_video.mp4")
|
12 |
+
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
13 |
|
14 |
+
try:
|
15 |
+
# Convert video to MP4 using ffmpeg
|
16 |
print("Converting video to MP4...")
|
17 |
+
subprocess.run(
|
18 |
+
["ffmpeg", "-i", video_path, "-c:v", "libx264", "-preset", "fast", output_video_path],
|
19 |
+
check=True, # Raise error if ffmpeg fails
|
20 |
+
stdout=subprocess.PIPE,
|
21 |
+
stderr=subprocess.PIPE
|
22 |
+
)
|
23 |
+
print("Video converted successfully!")
|
24 |
|
25 |
+
# Transcribe video
|
26 |
+
print("Transcribing video...")
|
27 |
result = model.transcribe(output_video_path, language="en")
|
28 |
print("Transcription completed!")
|
29 |
|
|
|
32 |
if language == "English":
|
33 |
segments = result["segments"]
|
34 |
else:
|
|
|
35 |
model_map = {
|
36 |
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
37 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
|
|
48 |
if not model_name:
|
49 |
return f"Unsupported language: {language}"
|
50 |
|
51 |
+
print(f"Loading translation model: {model_name}")
|
52 |
if language == "Telugu":
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
55 |
tgt_lang = "tel_Telu"
|
|
|
56 |
for segment in result["segments"]:
|
57 |
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
58 |
translated_tokens = translation_model.generate(
|
|
|
63 |
else:
|
64 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
65 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
|
|
66 |
for segment in result["segments"]:
|
67 |
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
68 |
translated = translation_model.generate(**inputs)
|
|
|
70 |
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
71 |
|
72 |
# Create SRT file
|
|
|
|
|
73 |
with open(srt_path, "w", encoding="utf-8") as f:
|
74 |
for i, segment in enumerate(segments, 1):
|
75 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
|
|
80 |
return srt_path
|
81 |
|
82 |
except subprocess.CalledProcessError as e:
|
83 |
+
print(f"FFmpeg Error: {e.stderr.decode()}")
|
84 |
+
return None
|
85 |
except Exception as e:
|
86 |
+
print(f"Unexpected Error: {str(e)}")
|
87 |
+
return None
|
88 |
finally:
|
89 |
# Clean up temporary files
|
|
|
|
|
|
|
90 |
if os.path.exists(output_video_path):
|
91 |
+
os.remove(output_video_path)
|
92 |
+
if os.path.exists(video_path):
|
93 |
+
os.remove(video_path)
|