Commit
·
ed41184
1
Parent(s):
d6a8bc7
Add Gradio app for video subtitling
Browse files- app.py +52 -0
- requirements.txt +4 -0
- utils.py +66 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from utils import process_video # Import your backend logic
|
3 |
+
|
4 |
+
# Define supported languages
|
5 |
+
language_map = {
|
6 |
+
"English": None,
|
7 |
+
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
8 |
+
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
9 |
+
"French": "Helsinki-NLP/opus-mt-en-fr",
|
10 |
+
"German": "Helsinki-NLP/opus-mt-en-de",
|
11 |
+
"Telugu": "facebook/nllb-200-distilled-600M",
|
12 |
+
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
13 |
+
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
14 |
+
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
15 |
+
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
16 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-jap"
|
17 |
+
}
|
18 |
+
|
19 |
+
def generate_subtitles(video_file, language):
|
20 |
+
"""
|
21 |
+
Process the uploaded video and generate subtitles.
|
22 |
+
"""
|
23 |
+
try:
|
24 |
+
srt_path = process_video(video_file, language)
|
25 |
+
return srt_path # Return the path to the generated SRT file
|
26 |
+
except Exception as e:
|
27 |
+
return f"Error: {str(e)}"
|
28 |
+
|
29 |
+
# Define Gradio Interface
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
gr.Markdown("# AI-Powered Video Subtitling")
|
32 |
+
gr.Markdown("Upload a video and select a language to generate subtitles.")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
video_input = gr.File(label="Upload Video File", file_types=["mp4", "mkv", "avi"])
|
36 |
+
language_dropdown = gr.Dropdown(
|
37 |
+
choices=list(language_map.keys()),
|
38 |
+
label="Select Subtitle Language",
|
39 |
+
value="English"
|
40 |
+
)
|
41 |
+
|
42 |
+
generate_button = gr.Button("Generate Subtitles")
|
43 |
+
output_srt = gr.File(label="Download Subtitles")
|
44 |
+
|
45 |
+
generate_button.click(
|
46 |
+
generate_subtitles,
|
47 |
+
inputs=[video_input, language_dropdown],
|
48 |
+
outputs=output_srt
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch Gradio App
|
52 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.41.2
|
2 |
+
transformers==4.35.2
|
3 |
+
whisper==20230314
|
4 |
+
torch==2.0.1
|
utils.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Load Whisper model
|
6 |
+
model = whisper.load_model("base")
|
7 |
+
|
8 |
+
def process_video(video_file, language):
|
9 |
+
# Save uploaded video locally
|
10 |
+
video_path = "/tmp/video.mp4"
|
11 |
+
with open(video_path, "wb") as f:
|
12 |
+
f.write(video_file.read())
|
13 |
+
|
14 |
+
try:
|
15 |
+
print("Transcribing video to English...")
|
16 |
+
result = model.transcribe(video_path, language="en")
|
17 |
+
|
18 |
+
segments = []
|
19 |
+
if language == "English":
|
20 |
+
segments = result["segments"]
|
21 |
+
else:
|
22 |
+
if language == "Telugu":
|
23 |
+
model_name = "facebook/nllb-200-distilled-600M"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
26 |
+
tgt_lang = "tel_Telu"
|
27 |
+
print(f"Translating to Telugu using NLLB-200 Distilled...")
|
28 |
+
for segment in result["segments"]:
|
29 |
+
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
30 |
+
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
|
31 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
32 |
+
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
33 |
+
else:
|
34 |
+
model_map = {
|
35 |
+
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
36 |
+
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
37 |
+
"French": "Helsinki-NLP/opus-mt-en-fr",
|
38 |
+
"German": "Helsinki-NLP/opus-mt-en-de",
|
39 |
+
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
40 |
+
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
41 |
+
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
42 |
+
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
43 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-jap"
|
44 |
+
}
|
45 |
+
model_name = model_map[language]
|
46 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
47 |
+
translation_model = MarianMTModel.from_pretrained(model_name)
|
48 |
+
print(f"Translating to {language}...")
|
49 |
+
for segment in result["segments"]:
|
50 |
+
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
51 |
+
translated = translation_model.generate(**inputs)
|
52 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
53 |
+
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
54 |
+
|
55 |
+
# Create SRT file
|
56 |
+
srt_path = "/tmp/subtitles.srt"
|
57 |
+
with open(srt_path, "w", encoding="utf-8") as f:
|
58 |
+
for i, segment in enumerate(segments, 1):
|
59 |
+
start = f"{segment['start']:.3f}".replace(".", ",")
|
60 |
+
end = f"{segment['end']:.3f}".replace(".", ",")
|
61 |
+
text = segment["text"].strip()
|
62 |
+
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
63 |
+
return srt_path
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
return f"Error: {str(e)}"
|