Spaces:
Running
Running
File size: 1,693 Bytes
8fd073e d2aa5d8 8fd073e d2aa5d8 e507c2a d2aa5d8 92c7439 8fd073e 188a2fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
title: Web Scraper
emoji: 🕷️
colorFrom: blue
colorTo: indigo
sdk: streamlit
app_file: app.py
pinned: false
license: mit
sdk_version: 1.44.1
---
# Project Overview
This project implements a text parsing and information extraction tool using a chat model. The main functionality is encapsulated in the `parse.py` file, which utilizes an API to process text content and extract relevant information based on specified descriptions.
## Files
- `parse.py`: Contains the implementation for parsing and extracting information from text content using a chat model. It imports necessary libraries, sets up an API key, defines a chat prompt template, and includes a function `parse_with_ollama` that processes chunks of text based on a provided description.
## Setup Instructions
1. **Clone the Repository**
```
git clone <repository-url>
cd project
```
2. **Install Dependencies**
Ensure you have Python installed, then install the required libraries:
```
pip install langchain_core langchain_openai
```
3. **Set Up API Key**
Replace the placeholder API key in `parse.py` with your actual OpenRouter API key.
## Usage
To use the parsing functionality, call the `parse_with_ollama` function from `parse.py` with the appropriate parameters:
```python
from parse import parse_with_ollama
dom_chunks = ["Your text content here"]
parse_description = "Description of the information to extract"
results = parse_with_ollama(dom_chunks, parse_description)
print(results)
```
## Contributing
Contributions are welcome! Please submit a pull request or open an issue for any enhancements or bug fixes.
## License
This project is licensed under the MIT License. |