scrape-with-ai / parse.py
PyQuarX's picture
Update parse.py
7d633ab verified
raw
history blame
6.56 kB
import pandas as pd
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import torch
import os
# Hugging Face API Token from Space Secrets
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set. Please set it in Hugging Face Space Settings under Secrets.")
# Model configuration
MODEL_NAME = "facebook/opt-125m" # Lightweight model; replace with e.g., mistralai/Mixtral-8x7B-Instruct-v0.1 for paid Spaces with GPU
# Initialize model and tokenizer
try:
# Log in to Hugging Face Hub
login(token=HF_TOKEN)
print("Successfully logged in to Hugging Face Hub")
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
# Create text generation pipeline
llm_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1, # Use GPU if available in Space
max_new_tokens=500, # Limit response length
pad_token_id=tokenizer.eos_token_id, # Ensure proper padding
)
except Exception as e:
print(f"Failed to load model: {str(e)}")
llm_pipeline = None
# Function to parse and extract information from the chunks
def parse(dom_chunks, parse_description):
"""Parse and extract information from DOM chunks using a local LLM."""
if llm_pipeline is None:
raise ValueError("LLM pipeline not initialized. Check model loading and ensure HF_TOKEN is set in Space Secrets.")
# Create a prompt template
template = (
"You are tasked with extracting specific information from the following text content: {dom_content}. "
"Please follow these instructions carefully:\n\n"
"1. **Task:** Extract data from the provided text that matches the description: {parse_description}.\n"
"2. **Output Format:** Return the extracted data ONLY as one or more Markdown tables. Each table MUST be correctly formatted.\n"
"3. **Markdown Table Format:** Each table must adhere to the following Markdown format:\n"
" - Start with a header row, clearly labeling each column, separated by pipes (|).\n"
" - Follow the header row with an alignment row, using hyphens (-) to indicate column alignment (e.g., --- for left alignment).\n"
" - Subsequent rows should contain the data, with cells aligned according to the alignment row.\n"
" - Use pipes (|) to separate columns in each data row.\n"
"4. **No Explanations:** Do not include any introductory or explanatory text before or after the table(s).\n"
"5. **Empty Response:** If no information matches the description, return an empty string ('').\n"
"6. **Multiple Tables:** If the text contains multiple tables matching the description, return each table separately, following the Markdown format for each.\n"
"7. **Accuracy:** The extracted data must be accurate and reflect the information in the provided text.\n"
)
parsed_results = []
# Loop through the chunks and parse
for i, chunk in enumerate(dom_chunks, start=1):
# Format the prompt
prompt = template.format(dom_content=chunk, parse_description=parse_description)
# Invoke the LLM pipeline
response = llm_pipeline(prompt, max_length=2000, truncation=True)
result = response[0]["generated_text"]
# Clean the output to keep only the Markdown table (remove prompt text)
start_idx = result.find("|")
if start_idx != -1:
result = result[start_idx:]
else:
result = "" # Return empty string if no table is found
print(f"Parsed batch {i} of {len(dom_chunks)}")
parsed_results.append(result)
# Return the parsed results as a single string
return "\n".join(parsed_results)
def merge_tables_with_llm(tables, parse_description):
"""Merges a list of Pandas DataFrames into a single Markdown table using a local LLM."""
if llm_pipeline is None:
raise ValueError("LLM pipeline not initialized. Check model loading and ensure HF_TOKEN is set in Space Secrets.")
# Convert DataFrames to Markdown strings
table_strings = [table.to_markdown(index=False) for table in tables]
# Create a prompt for the LLM
merge_prompt = (
"You are tasked with merging the following Markdown tables into a single, comprehensive Markdown table.\n"
"The tables contain information related to: {parse_description}.\n"
"Please follow these instructions carefully:\n\n"
"1. **Task:** Merge the data from the following tables into a single table that matches the description: {parse_description}.\n"
"2. **Output Format:** Return the merged data ONLY as a single Markdown table. The table MUST be correctly formatted.\n"
"3. **Markdown Table Format:** The table must adhere to the following Markdown format:\n"
" - Start with a header row, clearly labeling each column, separated by pipes (|).\n"
" - Follow the header row with an alignment row, using hyphens (-) to indicate column alignment (e.g., --- for left alignment).\n"
" - Subsequent rows should contain the data, with cells aligned according to the alignment row.\n"
" - Use pipes (|) to separate columns in each data row.\n"
"4. **No Explanations:** Do not include any introductory or explanatory text before or after the table.\n"
"5. **Empty Response:** If no information matches the description, return an empty string ('') if no data can be merged.\n"
"6. **Duplicate Columns:** If there are duplicate columns, rename them to be unique.\n"
"7. **Missing Values:** If there are missing values, fill them with 'N/A'.\n\n"
"Here are the tables:\n\n" + "\n\n".join(table_strings) +
"\n\nReturn the merged table in Markdown format:"
).format(parse_description=parse_description)
# Invoke the LLM pipeline
response = llm_pipeline(merge_prompt, max_length=2000, truncation=True)
merged_table = response[0]["generated_text"]
# Clean the output to keep only the Markdown table
start_idx = merged_table.find("|")
if start_idx != -1:
merged_table = merged_table[start_idx:]
else:
merged_table = "" # Return empty string if no table is found
return merged_table