scrape-with-ai / parse.py
PyQuarX's picture
Upload 6 files
188a2fe verified
raw
history blame
2.74 kB
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import os
# Load OpenRouter API Key
openrouter_api_key = "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"
model = ChatOpenAI(
openai_api_key=openrouter_api_key, # Use OpenRouter API key
model="meta-llama/llama-4-maverick:free", # Specify Qwen VL Plus model
base_url="https://openrouter.ai/api/v1" # OpenRouter API URL
)
# Create a chat prompt template
template = (
"You are tasked with extracting specific information from the following text content: {dom_content}. "
"Please follow these instructions carefully: \n\n"
"1. **Extract Information:** Only extract the information that directly matches the provided description: {parse_description}. "
"2. **No Extra Content:** Do not include any additional text, comments, or explanations in your response. "
"3. **Empty Response:** If no information matches the description, return an empty string ('')."
"4. **Direct Data Only:** Your output should contain only the data that is explicitly requested, with no other text."
"5. **Type:** The output should always be a table, and if there's more than one table, return every table separately. Use Markdown table format.\n"
"6. **Standardized Table Format:** Ensure each table is formatted as a Markdown table with clear headers and consistent column alignment.\n"
"7. **Accuracy:** The output should be as accurate as possible.\n"
"8. **Column Separators:** Use the pipe symbol (|) to clearly separate columns in the Markdown table.\n"
"9. **Header Row:** The first row of each table should be the header row, clearly labeling each column.\n"
"10. **Alignment Row:** The second row should contain hyphens (-) to indicate column alignment (e.g., --- for left alignment, :---: for center alignment, ---: for right alignment).\n"
"11. **Data Rows:** Subsequent rows should contain the data, with each cell aligned according to the alignment row.\n"
)
# Function to parse and extract information from the chunks
def parse(dom_chunks, parse_description):
prompt = ChatPromptTemplate.from_template(template)
chain = prompt | model
parsed_results = []
# Loop through the chunks and parse
for i, chunk in enumerate(dom_chunks, start=1):
response = chain.invoke({"dom_content": chunk, "parse_description": parse_description})
# Extract the content from AIMessage and add it to the results
print(f"Parsed batch {i} of {len(dom_chunks)}")
parsed_results.append(response.content) # Ensure content is extracted properly
# Return the parsed results as a single string
return "\n".join(parsed_results)