scrape-with-ai / app.py
PyQuarX's picture
Update app.py
b051531 verified
raw
history blame
4.16 kB
import streamlit as st
from scraper import scrape_website, split_dom_content, clean_body_content, extract_body_content
from parse import parse, merge_tables_with_llm
import streamlit as st
from Data import markdown_to_csv
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# Load OpenRouter API Key
openrouter_api_key = "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"
model = ChatOpenAI(
openai_api_key=openrouter_api_key,
model="meta-llama/llama-4-maverick:free",
base_url="https://openrouter.ai/api/v1"
)
st.title("AI Web Scraper")
# Multi-URL Input
urls = st.text_area("Enter Website URLs (one per line)", height=150)
urls_list = [url.strip() for url in urls.splitlines() if url.strip()]
if st.button("Scrape Sites"):
all_results = []
for url in urls_list:
st.write(f"Scraping: {url}")
result = scrape_website(url)
body_content = extract_body_content(result)
cleaned_content = clean_body_content(body_content)
all_results.append(cleaned_content)
st.session_state.all_dom_content = all_results
if "all_dom_content" in st.session_state:
parse_description = st.text_area("Describe what you want to parse from ALL sites:")
if st.button("Parse Content"):
if parse_description:
all_tables = []
for i, dom_content in enumerate(st.session_state.all_dom_content):
st.write(f"Parsing content from site {i+1}")
dom_chunks = split_dom_content(dom_content)
result = parse(dom_chunks, parse_description)
st.write("Raw LLM Output:")
st.write(result)
tables = markdown_to_csv(result)
if tables:
st.write("Extracted Tables:")
for table in tables:
st.write(table)
all_tables.append(table)
else:
st.write("No tables found in the output. Displaying raw output instead.")
st.text_area("Raw Output", result, height=200) # Display raw output
# Merge tables using LLM
if all_tables:
st.write("Merging all tables using LLM...")
merged_table_string = merge_tables_with_llm(all_tables, parse_description)
st.write("Merged Table (LLM Output):")
st.write(merged_table_string)
# Convert merged table string to DataFrame
merged_tables = markdown_to_csv(merged_table_string)
if merged_tables:
st.write("Merged Table (DataFrame):")
st.write(merged_tables[0]) # Display the first (and hopefully only) merged table
else:
st.write("Could not convert merged table string to DataFrame.")
else:
st.write("No tables to merge.")
def merge_tables_with_llm(tables, parse_description):
"""Merges a list of Pandas DataFrames into a single Markdown table using LLM."""
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# Convert DataFrames to Markdown strings
table_strings = [table.to_markdown(index=False) for table in tables]
# Create a prompt for the LLM
merge_prompt = (
"You are tasked with merging the following Markdown tables into a single, comprehensive Markdown table.\n"
"The tables contain information related to: {parse_description}.\n"
"Combine the tables, ensuring that the merged table is well-formatted and contains all relevant information.\n"
"If there are duplicate columns, rename them to be unique. If there are missing values, fill them with 'N/A'.\n"
"Ensure the final output is a single valid Markdown table.\n\n"
"Here are the tables:\n\n" + "\n\n".join(table_strings) +
"\n\nReturn the merged table in Markdown format:"
)
# Invoke the LLM
response = model.invoke({"dom_content": "", "parse_description": merge_prompt})
return response.content