Spaces:
Running
Running
Update parse.py
Browse files
parse.py
CHANGED
@@ -1,93 +1,59 @@
|
|
1 |
-
import pandas as pd
|
2 |
from langchain_core.prompts import ChatPromptTemplate
|
3 |
-
from
|
4 |
-
from
|
5 |
-
import torch
|
6 |
import os
|
|
|
7 |
|
8 |
-
# Hugging Face API Token from Space Secrets
|
9 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
-
if not HF_TOKEN:
|
11 |
-
raise ValueError("HF_TOKEN environment variable not set. Please set it in Hugging Face Space Settings under Secrets.")
|
12 |
-
|
13 |
-
# Model configuration
|
14 |
-
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
15 |
-
|
16 |
-
# Initialize model and tokenizer
|
17 |
-
try:
|
18 |
-
# Log in to Hugging Face Hub
|
19 |
-
login(token=HF_TOKEN)
|
20 |
-
print("Successfully logged in to Hugging Face Hub")
|
21 |
|
22 |
-
# Load tokenizer and model
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
24 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Function to parse and extract information from the chunks
|
40 |
def parse(dom_chunks, parse_description):
|
41 |
-
|
42 |
-
|
43 |
-
raise ValueError("LLM pipeline not initialized. Check model loading and ensure HF_TOKEN is set in Space Secrets.")
|
44 |
-
|
45 |
-
# Create a prompt template
|
46 |
-
template = (
|
47 |
-
"You are tasked with extracting specific information from the following text content: {dom_content}. "
|
48 |
-
"Please follow these instructions carefully:\n\n"
|
49 |
-
"1. **Task:** Extract data from the provided text that matches the description: {parse_description}.\n"
|
50 |
-
"2. **Output Format:** Return the extracted data ONLY as one or more Markdown tables. Each table MUST be correctly formatted.\n"
|
51 |
-
"3. **Markdown Table Format:** Each table must adhere to the following Markdown format:\n"
|
52 |
-
" - Start with a header row, clearly labeling each column, separated by pipes (|).\n"
|
53 |
-
" - Follow the header row with an alignment row, using hyphens (-) to indicate column alignment (e.g., --- for left alignment).\n"
|
54 |
-
" - Subsequent rows should contain the data, with cells aligned according to the alignment row.\n"
|
55 |
-
" - Use pipes (|) to separate columns in each data row.\n"
|
56 |
-
"4. **No Explanations:** Do not include any introductory or explanatory text before or after the table(s).\n"
|
57 |
-
"5. **Empty Response:** If no information matches the description, return an empty string ('').\n"
|
58 |
-
"6. **Multiple Tables:** If the text contains multiple tables matching the description, return each table separately, following the Markdown format for each.\n"
|
59 |
-
"7. **Accuracy:** The extracted data must be accurate and reflect the information in the provided text.\n"
|
60 |
-
)
|
61 |
|
62 |
parsed_results = []
|
63 |
|
64 |
# Loop through the chunks and parse
|
65 |
for i, chunk in enumerate(dom_chunks, start=1):
|
66 |
-
|
67 |
-
prompt = template.format(dom_content=chunk, parse_description=parse_description)
|
68 |
-
|
69 |
-
# Invoke the LLM pipeline
|
70 |
-
response = llm_pipeline(prompt, max_length=2000, truncation=True)
|
71 |
-
result = response[0]["generated_text"]
|
72 |
-
|
73 |
-
# Clean the output to keep only the Markdown table (remove prompt text)
|
74 |
-
start_idx = result.find("|")
|
75 |
-
if start_idx != -1:
|
76 |
-
result = result[start_idx:]
|
77 |
-
else:
|
78 |
-
result = "" # Return empty string if no table is found
|
79 |
|
|
|
80 |
print(f"Parsed batch {i} of {len(dom_chunks)}")
|
81 |
-
parsed_results.append(
|
82 |
|
83 |
# Return the parsed results as a single string
|
84 |
return "\n".join(parsed_results)
|
85 |
|
86 |
def merge_tables_with_llm(tables, parse_description):
|
87 |
-
"""Merges a list of Pandas DataFrames into a single Markdown table using
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
# Convert DataFrames to Markdown strings
|
92 |
table_strings = [table.to_markdown(index=False) for table in tables]
|
93 |
|
@@ -109,17 +75,9 @@ def merge_tables_with_llm(tables, parse_description):
|
|
109 |
"7. **Missing Values:** If there are missing values, fill them with 'N/A'.\n\n"
|
110 |
"Here are the tables:\n\n" + "\n\n".join(table_strings) +
|
111 |
"\n\nReturn the merged table in Markdown format:"
|
112 |
-
)
|
113 |
-
|
114 |
-
# Invoke the LLM pipeline
|
115 |
-
response = llm_pipeline(merge_prompt, max_length=2000, truncation=True)
|
116 |
-
merged_table = response[0]["generated_text"]
|
117 |
-
|
118 |
-
# Clean the output to keep only the Markdown table
|
119 |
-
start_idx = merged_table.find("|")
|
120 |
-
if start_idx != -1:
|
121 |
-
merged_table = merged_table[start_idx:]
|
122 |
-
else:
|
123 |
-
merged_table = "" # Return empty string if no table is found
|
124 |
|
125 |
-
|
|
|
|
|
|
|
|
|
|
1 |
from langchain_core.prompts import ChatPromptTemplate
|
2 |
+
from langchain_openai import ChatOpenAI
|
3 |
+
from langchain_core.messages import HumanMessage
|
|
|
4 |
import os
|
5 |
+
import pandas as pd
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
+
# Load OpenRouter API Key
|
10 |
+
openrouter_api_key = os.getenv("API_MV")
|
11 |
+
|
12 |
+
model = ChatOpenAI(
|
13 |
+
openai_api_key=openrouter_api_key, # Use OpenRouter API key
|
14 |
+
model="meta-llama/llama-4-maverick:free", # Specify Qwen VL Plus model
|
15 |
+
base_url="https://openrouter.ai/api/v1" # OpenRouter API URL
|
16 |
+
)
|
17 |
+
|
18 |
+
# Create a chat prompt template
|
19 |
+
template = (
|
20 |
+
"You are tasked with extracting specific information from the following text content: {dom_content}. "
|
21 |
+
"Please follow these instructions carefully:\n\n"
|
22 |
+
"1. **Task:** Extract data from the provided text that matches the description: {parse_description}.\n"
|
23 |
+
"2. **Output Format:** Return the extracted data ONLY as one or more Markdown tables. Each table MUST be correctly formatted.\n"
|
24 |
+
"3. **Markdown Table Format:** Each table must adhere to the following Markdown format:\n"
|
25 |
+
" - Start with a header row, clearly labeling each column, separated by pipes (|).\n"
|
26 |
+
" - Follow the header row with an alignment row, using hyphens (-) to indicate column alignment (e.g., --- for left alignment).\n"
|
27 |
+
" - Subsequent rows should contain the data, with cells aligned according to the alignment row.\n"
|
28 |
+
" - Use pipes (|) to separate columns in each data row.\n"
|
29 |
+
"4. **No Explanations:** Do not include any introductory or explanatory text before or after the table(s).\n"
|
30 |
+
"5. **Empty Response:** If no information matches the description, return an empty string ('').\n"
|
31 |
+
"6. **Multiple Tables:** If the text contains multiple tables matching the description, return each table separately, following the Markdown format for each.\n"
|
32 |
+
"7. **Accuracy:** The extracted data must be accurate and reflect the information in the provided text.\n"
|
33 |
+
)
|
34 |
|
35 |
# Function to parse and extract information from the chunks
|
36 |
def parse(dom_chunks, parse_description):
|
37 |
+
prompt = ChatPromptTemplate.from_template(template)
|
38 |
+
chain = prompt | model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
parsed_results = []
|
41 |
|
42 |
# Loop through the chunks and parse
|
43 |
for i, chunk in enumerate(dom_chunks, start=1):
|
44 |
+
response = chain.invoke({"dom_content": chunk, "parse_description": parse_description})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Extract the content from AIMessage and add it to the results
|
47 |
print(f"Parsed batch {i} of {len(dom_chunks)}")
|
48 |
+
parsed_results.append(response.content) # Ensure content is extracted properly
|
49 |
|
50 |
# Return the parsed results as a single string
|
51 |
return "\n".join(parsed_results)
|
52 |
|
53 |
def merge_tables_with_llm(tables, parse_description):
|
54 |
+
"""Merges a list of Pandas DataFrames into a single Markdown table using LLM."""
|
55 |
+
from langchain_core.prompts import ChatPromptTemplate
|
56 |
+
from langchain_openai import ChatOpenAI
|
|
|
57 |
# Convert DataFrames to Markdown strings
|
58 |
table_strings = [table.to_markdown(index=False) for table in tables]
|
59 |
|
|
|
75 |
"7. **Missing Values:** If there are missing values, fill them with 'N/A'.\n\n"
|
76 |
"Here are the tables:\n\n" + "\n\n".join(table_strings) +
|
77 |
"\n\nReturn the merged table in Markdown format:"
|
78 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Invoke the LLM
|
81 |
+
message = HumanMessage(content=merge_prompt)
|
82 |
+
response = model.invoke([message])
|
83 |
+
return response.content
|