PyQuarX commited on
Commit
90924f6
·
verified ·
1 Parent(s): b051531

Update parse.py

Browse files
Files changed (1) hide show
  1. parse.py +51 -12
parse.py CHANGED
@@ -1,6 +1,13 @@
1
  from langchain_core.prompts import ChatPromptTemplate
2
  from langchain_openai import ChatOpenAI
 
3
  import os
 
 
 
 
 
 
4
 
5
  # Load OpenRouter API Key
6
  openrouter_api_key = "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"
@@ -14,18 +21,18 @@ model = ChatOpenAI(
14
  # Create a chat prompt template
15
  template = (
16
  "You are tasked with extracting specific information from the following text content: {dom_content}. "
17
- "Please follow these instructions carefully: \n\n"
18
- "1. **Extract Information:** Only extract the information that directly matches the provided description: {parse_description}. "
19
- "2. **No Extra Content:** Do not include any additional text, comments, or explanations in your response. "
20
- "3. **Empty Response:** If no information matches the description, return an empty string ('')."
21
- "4. **Direct Data Only:** Your output should contain only the data that is explicitly requested, with no other text."
22
- "5. **Type:** The output should always be a table, and if there's more than one table, return every table separately. Use Markdown table format.\n"
23
- "6. **Standardized Table Format:** Ensure each table is formatted as a Markdown table with clear headers and consistent column alignment.\n"
24
- "7. **Accuracy:** The output should be as accurate as possible.\n"
25
- "8. **Column Separators:** Use the pipe symbol (|) to clearly separate columns in the Markdown table.\n"
26
- "9. **Header Row:** The first row of each table should be the header row, clearly labeling each column.\n"
27
- "10. **Alignment Row:** The second row should contain hyphens (-) to indicate column alignment (e.g., --- for left alignment, :---: for center alignment, ---: for right alignment).\n"
28
- "11. **Data Rows:** Subsequent rows should contain the data, with each cell aligned according to the alignment row.\n"
29
  )
30
 
31
  # Function to parse and extract information from the chunks
@@ -45,3 +52,35 @@ def parse(dom_chunks, parse_description):
45
 
46
  # Return the parsed results as a single string
47
  return "\n".join(parsed_results)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from langchain_core.prompts import ChatPromptTemplate
2
  from langchain_openai import ChatOpenAI
3
+ from langchain_core.messages import HumanMessage
4
  import os
5
+ import pandas as pd
6
+
7
+ from huggingface_hub import login
8
+
9
+ login("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")
10
+
11
 
12
  # Load OpenRouter API Key
13
  openrouter_api_key = "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"
 
21
  # Create a chat prompt template
22
  template = (
23
  "You are tasked with extracting specific information from the following text content: {dom_content}. "
24
+ "Please follow these instructions carefully:\n\n"
25
+ "1. **Task:** Extract data from the provided text that matches the description: {parse_description}.\n"
26
+ "2. **Output Format:** Return the extracted data ONLY as one or more Markdown tables. Each table MUST be correctly formatted.\n"
27
+ "3. **Markdown Table Format:** Each table must adhere to the following Markdown format:\n"
28
+ " - Start with a header row, clearly labeling each column, separated by pipes (|).\n"
29
+ " - Follow the header row with an alignment row, using hyphens (-) to indicate column alignment (e.g., --- for left alignment).\n"
30
+ " - Subsequent rows should contain the data, with cells aligned according to the alignment row.\n"
31
+ " - Use pipes (|) to separate columns in each data row.\n"
32
+ "4. **No Explanations:** Do not include any introductory or explanatory text before or after the table(s).\n"
33
+ "5. **Empty Response:** If no information matches the description, return an empty string ('').\n"
34
+ "6. **Multiple Tables:** If the text contains multiple tables matching the description, return each table separately, following the Markdown format for each.\n"
35
+ "7. **Accuracy:** The extracted data must be accurate and reflect the information in the provided text.\n"
36
  )
37
 
38
  # Function to parse and extract information from the chunks
 
52
 
53
  # Return the parsed results as a single string
54
  return "\n".join(parsed_results)
55
+
56
+ def merge_tables_with_llm(tables, parse_description):
57
+ """Merges a list of Pandas DataFrames into a single Markdown table using LLM."""
58
+ from langchain_core.prompts import ChatPromptTemplate
59
+ from langchain_openai import ChatOpenAI
60
+ # Convert DataFrames to Markdown strings
61
+ table_strings = [table.to_markdown(index=False) for table in tables]
62
+
63
+ # Create a prompt for the LLM
64
+ merge_prompt = (
65
+ "You are tasked with merging the following Markdown tables into a single, comprehensive Markdown table.\n"
66
+ "The tables contain information related to: {parse_description}.\n"
67
+ "Please follow these instructions carefully:\n\n"
68
+ "1. **Task:** Merge the data from the following tables into a single table that matches the description: {parse_description}.\n"
69
+ "2. **Output Format:** Return the merged data ONLY as a single Markdown table. The table MUST be correctly formatted.\n"
70
+ "3. **Markdown Table Format:** The table must adhere to the following Markdown format:\n"
71
+ " - Start with a header row, clearly labeling each column, separated by pipes (|).\n"
72
+ " - Follow the header row with an alignment row, using hyphens (-) to indicate column alignment (e.g., --- for left alignment).\n"
73
+ " - Subsequent rows should contain the data, with cells aligned according to the alignment row.\n"
74
+ " - Use pipes (|) to separate columns in each data row.\n"
75
+ "4. **No Explanations:** Do not include any introductory or explanatory text before or after the table.\n"
76
+ "5. **Empty Response:** If no information matches the description, return an empty string ('') if no data can be merged.\n"
77
+ "6. **Duplicate Columns:** If there are duplicate columns, rename them to be unique.\n"
78
+ "7. **Missing Values:** If there are missing values, fill them with 'N/A'.\n\n"
79
+ "Here are the tables:\n\n" + "\n\n".join(table_strings) +
80
+ "\n\nReturn the merged table in Markdown format:"
81
+ )
82
+
83
+ # Invoke the LLM
84
+ message = HumanMessage(content=merge_prompt)
85
+ response = model.invoke([message])
86
+ return response.content