from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI import os # Load OpenRouter API Key openrouter_api_key = "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" model = ChatOpenAI( openai_api_key=openrouter_api_key, # Use OpenRouter API key model="meta-llama/llama-4-maverick:free", # Specify Qwen VL Plus model base_url="https://openrouter.ai/api/v1" # OpenRouter API URL ) # Create a chat prompt template template = ( "You are tasked with extracting specific information from the following text content: {dom_content}. " "Please follow these instructions carefully: \n\n" "1. **Extract Information:** Only extract the information that directly matches the provided description: {parse_description}. " "2. **No Extra Content:** Do not include any additional text, comments, or explanations in your response. " "3. **Empty Response:** If no information matches the description, return an empty string ('')." "4. **Direct Data Only:** Your output should contain only the data that is explicitly requested, with no other text." "5. **Type:** The output should always be a table, and if there's more than one table, return every table separately. Use Markdown table format.\n" "6. **Standardized Table Format:** Ensure each table is formatted as a Markdown table with clear headers and consistent column alignment.\n" "7. **Accuracy:** The output should be as accurate as possible.\n" "8. **Column Separators:** Use the pipe symbol (|) to clearly separate columns in the Markdown table.\n" "9. **Header Row:** The first row of each table should be the header row, clearly labeling each column.\n" "10. **Alignment Row:** The second row should contain hyphens (-) to indicate column alignment (e.g., --- for left alignment, :---: for center alignment, ---: for right alignment).\n" "11. **Data Rows:** Subsequent rows should contain the data, with each cell aligned according to the alignment row.\n" ) # Function to parse and extract information from the chunks def parse(dom_chunks, parse_description): prompt = ChatPromptTemplate.from_template(template) chain = prompt | model parsed_results = [] # Loop through the chunks and parse for i, chunk in enumerate(dom_chunks, start=1): response = chain.invoke({"dom_content": chunk, "parse_description": parse_description}) # Extract the content from AIMessage and add it to the results print(f"Parsed batch {i} of {len(dom_chunks)}") parsed_results.append(response.content) # Ensure content is extracted properly # Return the parsed results as a single string return "\n".join(parsed_results)