File size: 1,342 Bytes
b235afa
 
e1b6041
 
711fde0
 
4406c32
b235afa
711fde0
 
 
aaae658
35d2c47
4406c32
8f108e1
35d2c47
 
8f108e1
 
 
 
 
 
 
4406c32
aaae658
4406c32
6a8a445
4406c32
 
 
 
 
c912576
4406c32
3e519ba
4406c32
c912576
4406c32
711fde0
 
4406c32
711fde0
 
4406c32
 
 
 
aaae658
b235afa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr

import ctransformers

class Z(object):
    def __init__(self):
        self.llm = None

    def init(self):
        pass

    def greet(self, txt0, paramTemp):
        prompt0 = txt0

        # for Wizard-Vicuna-13B
        prompt00 = f'''USER: {prompt0}
ASSISTANT:'''

        prompt00 = f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt0}

### Response:'''
        
        response0 = llm(prompt00, max_new_tokens=198, temperature=paramTemp) # 0.5, 0.3
        
        return f'{response0}'

from ctransformers import AutoModelForCausalLM

# wizzard vicuna
# see https://github.com/melodysdreamj/WizardVicunaLM
llm = AutoModelForCausalLM.from_pretrained('TheBloke/Wizard-Vicuna-13B-Uncensored-GGML', model_file='Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin', model_type='llama')

#llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-12b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2')

#llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-7b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2')


z = Z()
z.llm = llm
z.init()

def greet(arg0):
    global z
    return z.greet(arg0)

iface = gr.Interface(fn=greet, inputs=["text", gr.Slider(0.0, 1.0)], outputs="text")
iface.launch()