File size: 1,342 Bytes
b235afa e1b6041 711fde0 4406c32 b235afa 711fde0 aaae658 35d2c47 4406c32 8f108e1 35d2c47 8f108e1 4406c32 aaae658 4406c32 6a8a445 4406c32 c912576 4406c32 3e519ba 4406c32 c912576 4406c32 711fde0 4406c32 711fde0 4406c32 aaae658 b235afa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import ctransformers
class Z(object):
def __init__(self):
self.llm = None
def init(self):
pass
def greet(self, txt0, paramTemp):
prompt0 = txt0
# for Wizard-Vicuna-13B
prompt00 = f'''USER: {prompt0}
ASSISTANT:'''
prompt00 = f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt0}
### Response:'''
response0 = llm(prompt00, max_new_tokens=198, temperature=paramTemp) # 0.5, 0.3
return f'{response0}'
from ctransformers import AutoModelForCausalLM
# wizzard vicuna
# see https://github.com/melodysdreamj/WizardVicunaLM
llm = AutoModelForCausalLM.from_pretrained('TheBloke/Wizard-Vicuna-13B-Uncensored-GGML', model_file='Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin', model_type='llama')
#llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-12b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2')
#llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-7b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2')
z = Z()
z.llm = llm
z.init()
def greet(arg0):
global z
return z.greet(arg0)
iface = gr.Interface(fn=greet, inputs=["text", gr.Slider(0.0, 1.0)], outputs="text")
iface.launch() |