File size: 16,038 Bytes
09d905b
f9567e5
09d905b
 
 
 
f9567e5
09d905b
 
20ddbb6
 
09d905b
 
c112753
09d905b
 
 
 
 
20ddbb6
09d905b
 
20ddbb6
09d905b
 
 
 
 
f9567e5
 
09d905b
 
 
 
f9567e5
09d905b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ddbb6
09d905b
 
 
20ddbb6
09d905b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ddbb6
09d905b
 
 
20ddbb6
09d905b
 
 
20ddbb6
09d905b
 
20ddbb6
09d905b
 
 
 
20ddbb6
09d905b
 
 
 
 
c112753
 
09d905b
c112753
09d905b
 
c112753
 
09d905b
 
c112753
 
 
 
 
 
 
09d905b
c112753
09d905b
 
 
 
 
 
 
 
 
c112753
09d905b
 
20ddbb6
09d905b
c112753
 
 
09d905b
 
 
c112753
 
 
 
 
 
 
 
 
 
 
09d905b
c112753
 
09d905b
 
c112753
 
09d905b
c112753
 
 
 
 
 
 
 
09d905b
 
 
 
 
 
 
c112753
 
 
 
 
 
 
 
 
 
09d905b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c112753
 
 
 
 
 
09d905b
c112753
09d905b
c112753
 
 
 
 
09d905b
20ddbb6
 
09d905b
c112753
09d905b
c112753
 
09d905b
 
c112753
 
09d905b
 
c112753
 
 
09d905b
c112753
 
 
09d905b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# import gradio as gr

# from absl import flags
# from absl import app
# from ml_collections import config_flags
# import os

# import spaces #[uncomment to use ZeroGPU]
# import torch


# import os
# import random

# import numpy as np
# import torch
# import torch.nn.functional as F
# from torchvision.utils import save_image
# from huggingface_hub import hf_hub_download

# from absl import logging
# import ml_collections

# from diffusion.flow_matching import ODEEulerFlowMatchingSolver
# import utils
# import libs.autoencoder
# from libs.clip import FrozenCLIPEmbedder
# from configs import t2i_512px_clip_dimr


# def unpreprocess(x: torch.Tensor) -> torch.Tensor:
#     x = 0.5 * (x + 1.0)
#     x.clamp_(0.0, 1.0)
#     return x
    
# def cosine_similarity_torch(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
#     latent1_flat = latent1.view(-1)
#     latent2_flat = latent2.view(-1)
#     cosine_similarity = F.cosine_similarity(
#         latent1_flat.unsqueeze(0), latent2_flat.unsqueeze(0), dim=1
#     )
#     return cosine_similarity

# def kl_divergence(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
#     latent1_prob = F.softmax(latent1, dim=-1)
#     latent2_prob = F.softmax(latent2, dim=-1)
#     latent1_log_prob = torch.log(latent1_prob)
#     kl_div = F.kl_div(latent1_log_prob, latent2_prob, reduction="batchmean")
#     return kl_div

# def batch_decode(_z: torch.Tensor, decode, batch_size: int = 10) -> torch.Tensor:
#     num_samples = _z.size(0)
#     decoded_batches = []

#     for i in range(0, num_samples, batch_size):
#         batch = _z[i : i + batch_size]
#         decoded_batch = decode(batch)
#         decoded_batches.append(decoded_batch)

#     return torch.cat(decoded_batches, dim=0)

# def get_caption(llm: str, text_model, prompt_dict: dict, batch_size: int):
#     if batch_size == 3:
#         # Only addition or only subtraction mode.
#         assert len(prompt_dict) == 2, "Expected 2 prompts for batch_size 3."
#         batch_prompts = list(prompt_dict.values()) + [" "]
#     elif batch_size == 4:
#         # Addition and subtraction mode.
#         assert len(prompt_dict) == 3, "Expected 3 prompts for batch_size 4."
#         batch_prompts = list(prompt_dict.values()) + [" "]
#     elif batch_size >= 5:
#         # Linear interpolation mode.
#         assert len(prompt_dict) == 2, "Expected 2 prompts for linear interpolation."
#         batch_prompts = [prompt_dict["prompt_1"]] + [" "] * (batch_size - 2) + [prompt_dict["prompt_2"]]
#     else:
#         raise ValueError(f"Unsupported batch_size: {batch_size}")

#     if llm == "clip":
#         latent, latent_and_others = text_model.encode(batch_prompts)
#         context = latent_and_others["token_embedding"].detach()
#     elif llm == "t5":
#         latent, latent_and_others = text_model.get_text_embeddings(batch_prompts)
#         context = (latent_and_others["token_embedding"] * 10.0).detach()
#     else:
#         raise NotImplementedError(f"Language model {llm} not supported.")

#     token_mask = latent_and_others["token_mask"].detach()
#     tokens = latent_and_others["tokens"].detach()
#     captions = batch_prompts

#     return context, token_mask, tokens, captions

# # Load configuration and initialize models.
# config_dict = t2i_512px_clip_dimr.get_config()
# config = ml_collections.ConfigDict(config_dict)

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# logging.info(f"Using device: {device}")

# # Freeze configuration.
# config = ml_collections.FrozenConfigDict(config)

# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024  # Currently not used.

# # Load the main diffusion model.
# repo_id = "QHL067/CrossFlow"
# filename = "pretrained_models/t2i_512px_clip_dimr.pth"
# checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
# nnet = utils.get_nnet(**config.nnet)
# nnet = nnet.to(device)
# state_dict = torch.load(checkpoint_path, map_location=device)
# nnet.load_state_dict(state_dict)
# nnet.eval()

# # Initialize text model.
# llm = "clip"
# clip = FrozenCLIPEmbedder()
# clip.eval()
# clip.to(device)

# # Load autoencoder.
# autoencoder = libs.autoencoder.get_model(**config.autoencoder)
# autoencoder.to(device)


# @torch.cuda.amp.autocast()
# def encode(_batch: torch.Tensor) -> torch.Tensor:
#     """Encode a batch of images using the autoencoder."""
#     return autoencoder.encode(_batch)


# @torch.cuda.amp.autocast()
# def decode(_batch: torch.Tensor) -> torch.Tensor:
#     """Decode a batch of latent vectors using the autoencoder."""
#     return autoencoder.decode(_batch)


# @spaces.GPU #[uncomment to use ZeroGPU]
# def infer(
#     prompt1,
#     prompt2,
#     seed,
#     randomize_seed,
#     guidance_scale,
#     num_inference_steps,
#     num_of_interpolation,
#     save_gpu_memory=True,
#     progress=gr.Progress(track_tqdm=True),
# ):
#     if randomize_seed:
#         seed = random.randint(0, MAX_SEED)

#     torch.manual_seed(seed)
#     if device.type == "cuda":
#         torch.cuda.manual_seed_all(seed)

#     # Only support interpolation in this implementation.
#     prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
#     for key, value in prompt_dict.items():
#         assert value is not None, f"{key} must not be None."
#     assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."

#     # Get text embeddings and tokens.
#     _context, _token_mask, _token, _caption = get_caption(
#         llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
#     )

#     with torch.no_grad():
#         _z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
#         _z_x0, _mu, _log_var = nnet(
#             _context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
#         )
#         _z_init = _z_x0.reshape(_z_gaussian.shape)

#         # Prepare the initial latent representations based on the number of interpolations.
#         if num_of_interpolation == 3:
#             # Addition or subtraction mode.
#             if config.prompt_a is not None:
#                 assert config.prompt_s is None, "Only one of prompt_a or prompt_s should be provided."
#                 z_init_temp = _z_init[0] + _z_init[1]
#             elif config.prompt_s is not None:
#                 assert config.prompt_a is None, "Only one of prompt_a or prompt_s should be provided."
#                 z_init_temp = _z_init[0] - _z_init[1]
#             else:
#                 raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
#             mean = z_init_temp.mean()
#             std = z_init_temp.std()
#             _z_init[2] = (z_init_temp - mean) / std

#         elif num_of_interpolation == 4:
#             z_init_temp = _z_init[0] + _z_init[1] - _z_init[2]
#             mean = z_init_temp.mean()
#             std = z_init_temp.std()
#             _z_init[3] = (z_init_temp - mean) / std

#         elif num_of_interpolation >= 5:
#             tensor_a = _z_init[0]
#             tensor_b = _z_init[-1]
#             num_interpolations = num_of_interpolation - 2
#             interpolations = [
#                 tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
#                 for i in range(1, num_interpolations + 1)
#             ]
#             _z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)

#         else:
#             raise ValueError("Unsupported number of interpolations.")

#         assert guidance_scale > 1, "Guidance scale must be greater than 1."

#         has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
#         ode_solver = ODEEulerFlowMatchingSolver(
#             nnet,
#             bdv_model_fn=None,
#             step_size_type="step_in_dsigma",
#             guidance_scale=guidance_scale,
#         )
#         _z, _ = ode_solver.sample(
#             x_T=_z_init,
#             batch_size=num_of_interpolation,
#             sample_steps=num_inference_steps,
#             unconditional_guidance_scale=guidance_scale,
#             has_null_indicator=has_null_indicator,
#         )

#         if save_gpu_memory:
#             image_unprocessed = batch_decode(_z, decode)
#         else:
#             image_unprocessed = decode(_z)

#         samples = unpreprocess(image_unprocessed).contiguous()[0]

#     # return samples, seed
#     return seed


# # examples = [
# #     "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# #     "An astronaut riding a green horse",
# #     "A delicious ceviche cheesecake slice",
# # ]

# examples = [
#     ["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
# ]

# css = """
# #col-container {
#     margin: 0 auto;
#     max-width: 640px;
# }
# """

# with gr.Blocks(css=css) as demo:
#     with gr.Column(elem_id="col-container"):
#         gr.Markdown(" # CrossFlow")
#         gr.Markdown(" CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")

#         with gr.Row():
#             prompt1 = gr.Text(
#                 label="Prompt_1",
#                 show_label=False,
#                 max_lines=1,
#                 placeholder="Enter your prompt for the first image",
#                 container=False,
#             )
        
#         with gr.Row():
#             prompt2 = gr.Text(
#                 label="Prompt_2",
#                 show_label=False,
#                 max_lines=1,
#                 placeholder="Enter your prompt for the second image",
#                 container=False,
#             )

#         with gr.Row():
#             run_button = gr.Button("Run", scale=0, variant="primary")

#         result = gr.Image(label="Result", show_label=False)

#         with gr.Accordion("Advanced Settings", open=False):
#             seed = gr.Slider(
#                 label="Seed",
#                 minimum=0,
#                 maximum=MAX_SEED,
#                 step=1,
#                 value=0,
#             )

#             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

#             with gr.Row():
#                 guidance_scale = gr.Slider(
#                     label="Guidance scale",
#                     minimum=0.0,
#                     maximum=10.0,
#                     step=0.1,
#                     value=7.0,  # Replace with defaults that work for your model
#                 )
#             with gr.Row():
#                 num_inference_steps = gr.Slider(
#                     label="Number of inference steps",
#                     minimum=1,
#                     maximum=50,
#                     step=1,
#                     value=50,  # Replace with defaults that work for your model
#                 )
#             with gr.Row():
#                 num_of_interpolation = gr.Slider(
#                     label="Number of images for interpolation",
#                     minimum=5,
#                     maximum=50,
#                     step=1,
#                     value=10,  # Replace with defaults that work for your model
#                 )

#         gr.Examples(examples=examples, inputs=[prompt1, prompt2])
#     gr.on(
#         triggers=[run_button.click, prompt1.submit, prompt2.submit],
#         fn=infer,
#         inputs=[
#             prompt1,
#             prompt2,
#             seed,
#             randomize_seed,
#             guidance_scale,
#             num_inference_steps,
#             num_of_interpolation,
#         ],
#         # outputs=[result, seed],
#         outputs=[seed],
#     )

# if __name__ == "__main__":
#     demo.launch()

import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    print('image.shape')
    print(image.shape)

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()