File size: 9,874 Bytes
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""
Transformer-based varitional encoder model.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import copy


def clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


def build_mask(base_mask):
    assert len(base_mask.shape) == 2
    batch_size, seq_len = base_mask.shape[0], base_mask.shape[-1]

    # create subsequent token mask
    sub_mask = torch.tril(torch.ones([seq_len, seq_len],
                                     dtype=torch.uint8)).type_as(base_mask)
    sub_mask = sub_mask.unsqueeze(0).expand(batch_size, -1, -1)
    base_mask = base_mask.unsqueeze(1).expand(-1, seq_len, -1)
    return sub_mask & base_mask


class Adaptor(nn.Module):
    def __init__(self, input_dim, tar_dim):
        super(Adaptor, self).__init__()

        if tar_dim == 32768:
            output_channel = 8
        elif tar_dim == 16384:
            output_channel = 4
        else:
            raise NotImplementedError("only support 512px, 256px does not need this")

        self.tar_dim = tar_dim
        
        self.fc1 = nn.Linear(input_dim, 4096)
        self.ln_fc1 = nn.LayerNorm(4096)
        self.fc2 = nn.Linear(4096, 4096)
        self.ln_fc2 = nn.LayerNorm(4096)
        
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)
        self.ln_conv1 = nn.LayerNorm([32, 64, 64])
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)
        self.ln_conv2 = nn.LayerNorm([64, 64, 64])
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=output_channel, kernel_size=3, padding=1)
        
    def forward(self, x):
        x = torch.relu(self.ln_fc1(self.fc1(x)))
        x = torch.relu(self.ln_fc2(self.fc2(x)))
        
        x = x.view(-1, 1, 64, 64)
        
        x = torch.relu(self.ln_conv1(self.conv1(x)))
        x = torch.relu(self.ln_conv2(self.conv2(x)))

        x = self.conv3(x)
        x = x.view(-1, self.tar_dim)
        
        return x


class Compressor(nn.Module):
    def __init__(self, input_dim=4096, tar_dim=2048):
        super(Compressor, self).__init__()
        
        self.fc1 = nn.Linear(input_dim, tar_dim)
        self.ln_fc1 = nn.LayerNorm(tar_dim)
        self.fc2 = nn.Linear(tar_dim, tar_dim)
        
        
    def forward(self, x):
        x = torch.relu(self.ln_fc1(self.fc1(x)))
        x = self.fc2(x)
        
        return x


class TransEncoder(nn.Module):
    def __init__(self, d_model, N, num_token, head_num, d_ff, latten_size, down_sample_block=3, dropout=0.1, last_norm=True):
        super(TransEncoder, self).__init__()
        self.N = N
        if d_model==4096:
            # for T5-XXL, first use MLP to compress into 1024
            self.compressor = Compressor(input_dim=d_model, tar_dim=1024)
            d_model = 1024
        else:
            self.compressor = None
        
        self.layers = clones(EncoderLayer(MultiHeadAttentioin(d_model, head_num, dropout=dropout),
                                          FeedForward(d_model, d_ff, dropout=dropout),
                                          LayerNorm(d_model),
                                          LayerNorm(d_model)), N)
        
        self.reduction_layers = nn.ModuleList()
        for _ in range(down_sample_block):
            self.reduction_layers.append(
                EncoderReductionLayer(MultiHeadAttentioin(d_model, head_num, dropout=dropout),
                                  FeedForward(d_model, d_ff, dropout=dropout),
                                  nn.Linear(d_model, d_model // 2),
                                  LayerNorm(d_model),
                                  LayerNorm(d_model)))
            d_model = d_model // 2

        if latten_size == 8192 or latten_size == 4096:
            self.arc = 0
            self.linear = nn.Linear(d_model*num_token, latten_size)
            self.norm = LayerNorm(latten_size) if last_norm else None
        else:
            self.arc = 1
            self.adaptor = Adaptor(d_model*num_token, latten_size)


    def forward(self, x, mask):
        mask = mask.unsqueeze(1)

        if self.compressor is not None:
            x = self.compressor(x)
        
        for i, layer in enumerate(self.layers):
            x = layer(x, mask)

        for i, layer in enumerate(self.reduction_layers):
            x = layer(x, mask)

        if self.arc == 0:
            x = self.linear(x.view(x.shape[0],-1))
            x = self.norm(x) if self.norm else x
        else:
            x = self.adaptor(x.view(x.shape[0],-1))

        return x


class EncoderLayer(nn.Module):
    def __init__(self, attn, feed_forward, norm1, norm2, dropout=0.1):
        super(EncoderLayer, self).__init__()
        self.attn = attn
        self.feed_forward = feed_forward
        self.norm1, self.norm2 = norm1, norm2

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

    def forward(self, x, mask):
        # multihead attn & norm
        a = self.attn(x, x, x, mask)
        t = self.norm1(x + self.dropout1(a))

        # feed forward & norm
        z = self.feed_forward(t)  # linear(dropout(act(linear(x)))))
        y = self.norm2(t + self.dropout2(z))

        return y


class EncoderReductionLayer(nn.Module):
    def __init__(self, attn, feed_forward, reduction, norm1, norm2, dropout=0.1):
        super(EncoderReductionLayer, self).__init__()
        self.attn = attn
        self.feed_forward = feed_forward
        self.reduction = reduction
        self.norm1, self.norm2 = norm1, norm2

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

    def forward(self, x, mask):
        # multihead attn & norm
        a = self.attn(x, x, x, mask)
        t = self.norm1(x + self.dropout1(a))

        # feed forward & norm
        z = self.feed_forward(t)  # linear(dropout(act(linear(x)))))
        y = self.norm2(t + self.dropout2(z))

        # reduction
        # y = self.reduction(y).view(x.shape[0], -1, x.shape[-1])
        y = self.reduction(y)

        return y


class MultiHeadAttentioin(nn.Module):
    def __init__(self, d_model, head_num, dropout=0.1, d_v=None):
        super(MultiHeadAttentioin, self).__init__()
        assert d_model % head_num == 0, "d_model must be divisible by head_num"

        self.d_model = d_model
        self.head_num = head_num
        self.d_k = d_model // head_num
        self.d_v = self.d_k if d_v is None else d_v

        # d_model = d_k * head_num
        self.W_Q = nn.Linear(d_model, head_num * self.d_k)
        self.W_K = nn.Linear(d_model, head_num * self.d_k)
        self.W_V = nn.Linear(d_model, head_num * self.d_v)
        self.W_O = nn.Linear(d_model, d_model)

        self.dropout = nn.Dropout(dropout)

    def scaled_dp_attn(self, query, key, value, mask=None):
        assert self.d_k == query.shape[-1]

        # scores: [batch_size, head_num, seq_len, seq_len]
        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)

        # if torch.isinf(scores).any():
        #     # to avoid leaking
        #     scores = torch.where(scores == float('-inf'), torch.tensor(-65504.0), scores)
        #     scores = torch.where(scores == float('inf'), torch.tensor(65504.0), scores)

        if mask is not None:
            assert mask.ndim == 3, "Mask shape {} doesn't seem right...".format(mask.shape)
            mask = mask.unsqueeze(1)
            try:
                if scores.dtype == torch.float32:
                    scores = scores.masked_fill(mask == 0, -1e9)
                else:
                    scores = scores.masked_fill(mask == 0, -1e4)
            except RuntimeError:
                print("- scores device: {}".format(scores.device))
                print("- mask device: {}".format(mask.device))

        # attn: [batch_size, head_num, seq_len, seq_len]
        attn = F.softmax(scores, dim=-1)
        attn = self.dropout(attn)
        return torch.matmul(attn, value), attn

    def forward(self, q, k, v, mask):
        batch_size = q.shape[0]

        query = self.W_Q(q).view(batch_size, -1, self.head_num, self.d_k).transpose(1, 2)
        key = self.W_K(k).view(batch_size, -1, self.head_num, self.d_k).transpose(1, 2)
        value = self.W_V(v).view(batch_size, -1, self.head_num, self.d_k).transpose(1, 2)

        heads, attn = self.scaled_dp_attn(query, key, value, mask)
        heads = heads.transpose(1, 2).contiguous().view(batch_size, -1,
                                                        self.head_num * self.d_k)
        assert heads.shape[-1] == self.d_model and heads.shape[0] == batch_size

        y = self.W_O(heads)

        assert y.shape == q.shape
        return y


class LayerNorm(nn.Module):
    def __init__(self, layer_size, eps=1e-5):
        super(LayerNorm, self).__init__()
        self.g = nn.Parameter(torch.ones(layer_size))
        self.b = nn.Parameter(torch.zeros(layer_size))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        x = (x - mean) / (std + self.eps)
        return self.g * x + self.b


class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1, act='relu', d_output=None):
        super(FeedForward, self).__init__()
        self.d_model = d_model
        self.d_ff = d_ff
        d_output = d_model if d_output is None else d_output

        self.ffn_1 = nn.Linear(d_model, d_ff)
        self.ffn_2 = nn.Linear(d_ff, d_output)

        if act == 'relu':
            self.act = nn.ReLU()
        elif act == 'rrelu':
            self.act = nn.RReLU()
        else:
            raise NotImplementedError

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        y = self.ffn_2(self.dropout(self.act(self.ffn_1(x))))
        return y