two input
Browse files
app.py
CHANGED
@@ -14,8 +14,8 @@ if torch.cuda.is_available():
|
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
@@ -38,17 +38,17 @@ def infer(
|
|
38 |
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
41 |
-
image = pipe(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
).images[0]
|
50 |
|
51 |
-
return image, seed
|
52 |
|
53 |
|
54 |
examples = [
|
@@ -70,10 +70,18 @@ with gr.Blocks(css=css) as demo:
|
|
70 |
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
-
label="
|
74 |
show_label=False,
|
75 |
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
container=False,
|
78 |
)
|
79 |
|
|
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
+
# pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
|
|
38 |
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
41 |
+
# image = pipe(
|
42 |
+
# prompt=prompt,
|
43 |
+
# negative_prompt=negative_prompt,
|
44 |
+
# guidance_scale=guidance_scale,
|
45 |
+
# num_inference_steps=num_inference_steps,
|
46 |
+
# width=width,
|
47 |
+
# height=height,
|
48 |
+
# generator=generator,
|
49 |
+
# ).images[0]
|
50 |
|
51 |
+
# return image, seed
|
52 |
|
53 |
|
54 |
examples = [
|
|
|
70 |
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
+
label="Prompt_1",
|
74 |
show_label=False,
|
75 |
max_lines=1,
|
76 |
+
placeholder="Enter your prompt for the first image",
|
77 |
+
container=False,
|
78 |
+
)
|
79 |
+
|
80 |
+
prompt = gr.Text(
|
81 |
+
label="Prompt_2",
|
82 |
+
show_label=False,
|
83 |
+
max_lines=1,
|
84 |
+
placeholder="Enter your prompt for the second",
|
85 |
container=False,
|
86 |
)
|
87 |
|