# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np import math from timm.models.vision_transformer import PatchEmbed, Attention, Mlp import open_clip import torch.utils.checkpoint from .trans_autoencoder import TransEncoder, Adaptor def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ CrossFlow: update it for CFG with indicator """ def __init__(self, num_classes, hidden_size): super().__init__() self.embedding_table = nn.Embedding(num_classes, hidden_size) def forward(self, labels): embeddings = self.embedding_table(labels.int()) return embeddings ################################################################################# # Core DiT Model # ################################################################################# class DiTBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def forward(self, x, c): return torch.utils.checkpoint.checkpoint(self._forward, x, c) # return self._forward(x, c) def _forward(self, x, c): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, config, patch_size=2, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, num_classes=2, # for cfg indicator ): super().__init__() self.input_size = config.latent_size self.learn_sigma = config.learn_sigma self.in_channels = config.channels self.out_channels = self.in_channels * 2 if self.learn_sigma else self.in_channels self.patch_size = patch_size self.num_heads = num_heads self.x_embedder = PatchEmbed(self.input_size, patch_size, self.in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) self.y_embedder = LabelEmbedder(num_classes, hidden_size) num_patches = self.x_embedder.num_patches # Will use fixed sin-cos embedding: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False) self.blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) ]) self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) self.initialize_weights() ######### CrossFlow related if hasattr(config.textVAE, "num_down_sample_block"): down_sample_block = config.textVAE.num_down_sample_block else: down_sample_block = 3 self.context_encoder = TransEncoder(d_model=config.clip_dim, N=config.textVAE.num_blocks, num_token=config.num_clip_token, head_num=config.textVAE.num_attention_heads, d_ff=config.textVAE.hidden_dim, latten_size=config.channels * config.latent_size * config.latent_size * 2, down_sample_block=down_sample_block, dropout=config.textVAE.dropout_prob, last_norm=False) self.open_clip, _, self.open_clip_preprocess = open_clip.create_model_and_transforms('ViT-L-16-SigLIP-256', pretrained=None) self.open_clip_output = Adaptor(input_dim=1024, tar_dim=config.channels * config.latent_size * config.latent_size ) del self.open_clip.text del self.open_clip.logit_bias def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize (and freeze) pos_embed by sin-cos embedding: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5)) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) # Initialize label embedding table: nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = w = int(x.shape[1] ** 0.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) return imgs def _forward(self, x, t, null_indicator): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps """ x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(t) # (N, D) y = self.y_embedder(null_indicator) # (N, D) c = t + y # (N, D) for block in self.blocks: x = block(x, c) # (N, T, D) x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return [x] def _forward_with_cfg(self, x, t, cfg_scale): """ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, t) # For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) def _reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps * std + mu def _text_encoder(self, condition_context, tar_shape, mask): output = self.context_encoder(condition_context, mask) mu, log_var = torch.chunk(output, 2, dim=-1) z = self._reparameterize(mu, log_var) return [z, mu, log_var] def _img_clip(self, image_input): image_latent = self.open_clip.encode_image(image_input) image_latent = self.open_clip_output(image_latent) return image_latent, self.open_clip.logit_scale def forward(self, x, t = None, log_snr = None, text_encoder=False, text_decoder=False, image_clip=False, shape=None, mask=None, null_indicator=None): if text_encoder: return self._text_encoder(condition_context = x, tar_shape=shape, mask=mask) elif text_decoder: raise NotImplementedError return self._text_decoder(condition_enbedding = x, tar_shape=shape) # mask is not needed for decoder elif image_clip: return self._img_clip(image_input = x) else: return self._forward(x = x, t = t, null_indicator=null_indicator) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# # DiT Configs # ################################################################################# def DiT_H_2(config, **kwargs): return DiT(config=config, depth=36, hidden_size=1280, patch_size=2, num_heads=20, **kwargs) def DiT_XL_2(config, **kwargs): return DiT(config=config, depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) def DiT_XL_4(config, **kwargs): return DiT(config=config, depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) def DiT_XL_8(config, **kwargs): return DiT(config=config, depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) def DiT_L_2(config, **kwargs): return DiT(config=config, depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) def DiT_L_4(config, **kwargs): return DiT(config=config, depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) def DiT_L_8(config, **kwargs): return DiT(config=config, depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) def DiT_B_2(config, **kwargs): return DiT(config=config, depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) def DiT_B_4(config, **kwargs): return DiT(config=config, depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) def DiT_B_8(config, **kwargs): return DiT(config=config, depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiT_S_2(config, **kwargs): return DiT(config=config, depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def DiT_S_4(config, **kwargs): return DiT(config=config, depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) def DiT_S_8(config, **kwargs): return DiT(config=config, depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) DiT_models = { 'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8, 'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8, 'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8, 'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8, }