Spaces:
Sleeping
Sleeping
File size: 12,466 Bytes
7c8069d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import sys
import os
import warnings
import tempfile
import gradio as gr
import torch
from PIL import Image
import numpy as np
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
)
from diffusers.models.autoencoders.vq_model import VQModel
from src.transformer import SymmetricTransformer2DModel
from src.pipeline import UnifiedPipeline
from src.scheduler import Scheduler
from train.trainer_utils import load_images_to_tensor
# Suppress FutureWarnings to reduce clutter
warnings.filterwarnings("ignore", category=FutureWarning)
# Set Gradio temp directory to a writable location
def setup_gradio_temp_dir():
"""Setup a writable temp directory for Gradio with fallback options"""
possible_dirs = [
os.path.join(os.getcwd(), "gradio_tmp"), # Project directory
os.path.join(os.path.expanduser("~"), ".gradio_tmp"), # Home directory
tempfile.mkdtemp(prefix="gradio_") # System temp with unique name
]
for temp_dir in possible_dirs:
try:
os.makedirs(temp_dir, exist_ok=True)
# Test write permission
test_file = os.path.join(temp_dir, "test_write.tmp")
with open(test_file, "w") as f:
f.write("test")
os.remove(test_file)
os.environ["GRADIO_TEMP_DIR"] = temp_dir
print(f"β
Gradio temp directory set to: {temp_dir}")
return temp_dir
except (PermissionError, OSError) as e:
print(f"β οΈ Cannot use {temp_dir}: {e}")
continue
raise RuntimeError("Could not find a writable directory for Gradio temp files")
setup_gradio_temp_dir()
class MudditInterface:
def __init__(self, model_path="MeissonFlow/Meissonic", transformer_path="QingyuShi/Muddit"):
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
self.device = device
self.model_path = model_path
self.transformer_path = transformer_path or model_path
print("Loading models...")
self.load_models()
print("Models loaded successfully!")
def load_models(self):
"""Load all required models"""
try:
print("π₯ Loading transformer model...")
self.model = SymmetricTransformer2DModel.from_pretrained(
self.transformer_path,
subfolder="transformer",
)
print("π₯ Loading VQ model...")
self.vq_model = VQModel.from_pretrained(
self.model_path,
subfolder="vqvae"
)
print("π₯ Loading text encoder...")
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(
self.model_path,
subfolder="text_encoder"
)
print("π₯ Loading tokenizer...")
self.tokenizer = CLIPTokenizer.from_pretrained(
self.model_path,
subfolder="tokenizer"
)
print("π₯ Loading scheduler...")
self.scheduler = Scheduler.from_pretrained(
self.model_path,
subfolder="scheduler"
)
print("π§ Assembling pipeline...")
self.pipe = UnifiedPipeline(
vqvae=self.vq_model,
tokenizer=self.tokenizer,
text_encoder=self.text_encoder,
transformer=self.model,
scheduler=self.scheduler,
)
print(f"π Moving models to {self.device}...")
self.pipe.to(self.device)
except Exception as e:
print(f"β Error loading models: {str(e)}")
raise
def text_to_image(self, prompt, negative_prompt, height, width, steps, cfg_scale, seed):
"""Generate image from text prompt"""
try:
if seed == -1:
generator = None
else:
generator = torch.manual_seed(seed)
if not negative_prompt:
negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
output = self.pipe(
prompt=[prompt],
negative_prompt=negative_prompt,
height=height,
width=width,
guidance_scale=cfg_scale,
num_inference_steps=steps,
mask_token_embedding=None,
generator=generator
)
if hasattr(output, 'images') and len(output.images) > 0:
return output.images[0]
else:
return None
except Exception as e:
gr.Error(f"Error generating image: {str(e)}")
return None
def image_to_text(self, image, question, height, width, steps, cfg_scale):
"""Answer question about the image"""
try:
if image is None:
return "Please upload an image."
# Convert PIL image to tensor
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Save image temporarily and load using the existing function
temp_path = "temp_image.jpg"
image.save(temp_path)
try:
images = load_images_to_tensor(temp_path, target_size=(height, width))
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
if images is None:
return "Failed to process the image."
questions = [question] * len(images)
output = self.pipe(
prompt=questions,
image=images,
height=height,
width=width,
guidance_scale=cfg_scale,
num_inference_steps=steps,
mask_token_embedding=None,
)
if hasattr(output, 'prompts') and len(output.prompts) > 0:
return output.prompts[0]
else:
return "No response generated."
except Exception as e:
return f"Error processing image: {str(e)}"
def create_muddit_interface():
# Initialize the model interface
interface = MudditInterface()
with gr.Blocks(title="Muddit Interface", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π¨ Muddit Interface")
gr.Markdown("Generate images from text or ask questions about images using Muddit.")
with gr.Tabs():
# Text-to-Image Tab
with gr.TabItem("πΌοΈ Text-to-Image"):
gr.Markdown("### Generate images from text descriptions")
with gr.Row():
with gr.Column(scale=1):
t2i_prompt = gr.Textbox(
label="Prompt",
placeholder="A majestic night sky awash with billowing clouds, sparkling with a million twinkling stars",
lines=3
)
t2i_negative = gr.Textbox(
label="Negative Prompt (optional)",
placeholder="worst quality, low quality, blurry...",
lines=2
)
with gr.Row():
t2i_width = gr.Slider(
minimum=256, maximum=1024, value=1024, step=64,
label="Width"
)
t2i_height = gr.Slider(
minimum=256, maximum=1024, value=1024, step=64,
label="Height"
)
with gr.Row():
t2i_steps = gr.Slider(
minimum=1, maximum=100, value=64, step=1,
label="Inference Steps"
)
t2i_cfg = gr.Slider(
minimum=1.0, maximum=20.0, value=9.0, step=0.5,
label="CFG Scale"
)
t2i_seed = gr.Number(
label="Seed (-1 for random)",
value=42,
precision=0
)
t2i_generate = gr.Button("π¨ Generate Image", variant="primary")
with gr.Column(scale=1):
t2i_output = gr.Image(label="Generated Image", type="pil")
t2i_generate.click(
fn=interface.text_to_image,
inputs=[t2i_prompt, t2i_negative, t2i_height, t2i_width, t2i_steps, t2i_cfg, t2i_seed],
outputs=[t2i_output]
)
# Visual Question Answering Tab
with gr.TabItem("β Visual Question Answering"):
gr.Markdown("### Ask questions about images")
with gr.Row():
with gr.Column(scale=1):
vqa_image = gr.Image(
label="Upload Image",
type="pil"
)
vqa_question = gr.Textbox(
label="Question",
placeholder="What do you see in this image?",
lines=2
)
with gr.Row():
vqa_width = gr.Slider(
minimum=256, maximum=1024, value=1024, step=64,
label="Width"
)
vqa_height = gr.Slider(
minimum=256, maximum=1024, value=1024, step=64,
label="Height"
)
with gr.Row():
vqa_steps = gr.Slider(
minimum=1, maximum=100, value=64, step=1,
label="Inference Steps"
)
vqa_cfg = gr.Slider(
minimum=1.0, maximum=20.0, value=9.0, step=0.5,
label="CFG Scale"
)
vqa_submit = gr.Button("π€ Ask Question", variant="primary")
with gr.Column(scale=1):
vqa_output = gr.Textbox(
label="Answer",
lines=5,
interactive=False
)
vqa_submit.click(
fn=interface.image_to_text,
inputs=[vqa_image, vqa_question, vqa_height, vqa_width, vqa_steps, vqa_cfg],
outputs=[vqa_output]
)
# Example section
with gr.Accordion("π Examples", open=False):
gr.Markdown("""
### Text-to-Image Examples:
- "A majestic night sky awash with billowing clouds, sparkling with a million twinkling stars"
- "A hyper realistic image of a chimpanzee with a glass-enclosed brain on his head"
- "A samurai in a stylized cyberpunk outfit adorned with intricate steampunk gear"
### VQA Examples:
- "What objects do you see in this image?"
- "How many people are in the picture?"
- "What is the main subject of this image?"
- "Describe the scene in detail"
""")
return demo
if __name__ == "__main__":
demo = create_muddit_interface()
demo.launch() |