Spaces:
Sleeping
Sleeping
import argparse | |
import copy | |
import logging | |
import math | |
import os | |
import json | |
from contextlib import nullcontext | |
from pathlib import Path | |
import sys | |
sys.path.append(os.getcwd()) | |
import gc | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from peft import LoraConfig | |
from peft.utils import get_peft_model_state_dict | |
from torch.utils.data import DataLoader, default_collate | |
from torchvision import transforms | |
from torchvision.utils import save_image,make_grid | |
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model | |
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast | |
from transformers import ( | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
) | |
import diffusers.optimization | |
from diffusers import EMAModel, VQModel | |
from diffusers.loaders import LoraLoaderMixin | |
from diffusers.utils import is_wandb_available | |
from src.scheduler import Scheduler | |
from src.pipeline import UnifiedPipeline | |
from train.trainer_utils import save_checkpoint | |
from train.dataset_utils import ImageCaptionLargeDataset | |
from train.dataset_utils import tokenize_prompt, encode_prompt | |
from src.transformer import SymmetricTransformer2DModel | |
if is_wandb_available(): | |
import wandb | |
# wandb.login(key="") | |
logger = get_logger(__name__, log_level="INFO") | |
import torch._dynamo | |
torch._dynamo.config.verbose = True | |
# Optionally suppress errors to fall back to eager execution | |
torch._dynamo.config.suppress_errors = True | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--pretrained_transformer_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--text_encoder_architecture", | |
type=str, | |
default="open_clip", | |
required=False, | |
help="The architecture of the text encoder. One of ['CLIP', 'open_clip', 'flan-t5-base','Qwen2-0.5B','gemini-2b', 'CLIP_T5_base']", | |
) | |
parser.add_argument( | |
"--text_encoder_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--instance_dataset", | |
type=str, | |
default=None, | |
required=False, | |
help="The dataset to use for training. One of ['MSCOCO600K', 'PickaPicV2']", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
required=False, | |
help="A folder containing the training data of instance images.", | |
) | |
parser.add_argument( | |
"--training_from_scratch", | |
type=bool, | |
default=False, | |
required=False | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
parser.add_argument("--ema_decay", type=float, default=0.9999) | |
parser.add_argument("--ema_update_after_step", type=int, default=0) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="muse_training", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
"instructions." | |
), | |
) | |
parser.add_argument( | |
"--logging_steps", | |
type=int, | |
default=50, | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=( | |
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
" for more details" | |
), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=0.0003, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="wandb", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument("--validation_prompts", type=str, nargs="*") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument("--split_vae_encode", type=int, required=False, default=None) | |
parser.add_argument("--min_masking_rate", type=float, default=0.0) | |
parser.add_argument("--cond_dropout_prob", type=float, default=0.0) | |
parser.add_argument("--max_grad_norm", default=50.0, type=float, help="Max gradient norm.", required=False) | |
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa") | |
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa") | |
parser.add_argument("--lora_r", default=16, type=int) | |
parser.add_argument("--lora_alpha", default=32, type=int) | |
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+") | |
parser.add_argument("--text_encoder_lora_r", default=16, type=int) | |
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int) | |
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+") | |
parser.add_argument("--train_text_encoder", action="store_true") | |
parser.add_argument("--image_key", type=str, required=False) | |
parser.add_argument("--prompt_key", type=str, required=False) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument("--prompt_prefix", type=str, required=False, default=None) | |
args = parser.parse_args() | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
if args.instance_data_dir is not None: | |
if not os.path.exists(args.instance_data_dir): | |
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}") | |
return args | |
def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
latent_image_ids = latent_image_ids.reshape( | |
latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
) | |
# latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1) | |
return latent_image_ids.to(device=device, dtype=dtype) | |
def main(args): | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
if accelerator.is_main_process: | |
os.makedirs(args.output_dir, exist_ok=True) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_main_process: | |
accelerator.init_trackers("muddit", config=vars(copy.deepcopy(args))) | |
if args.seed is not None: | |
set_seed(args.seed) | |
if args.text_encoder_architecture == "gemma": | |
text_encoder_one = CLIPTextModelWithProjection.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant | |
) | |
tokenizer_one = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant | |
) | |
text_encoder_two = Gemma2Model.from_pretrained( | |
args.text_encoder_name_or_path, variant=args.variant | |
) | |
tokenizer_two = GemmaTokenizerFast.from_pretrained( | |
args.text_encoder_name_or_path, variant=args.variant | |
) | |
t5_dim = text_encoder_two.config.hidden_size | |
text_encoder = [text_encoder_one, text_encoder_two] | |
tokenizer = [tokenizer_one, tokenizer_two] | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
else: | |
raise ValueError(f"Unknown text encoder architecture: {args.text_encoder_architecture}") | |
vq_model = VQModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant | |
) | |
vq_model.requires_grad_(False) | |
model = SymmetricTransformer2DModel.from_pretrained( | |
args.pretrained_model_name_or_path if args.pretrained_transformer_path is None else args.pretrained_transformer_path, | |
subfolder="transformer", | |
low_cpu_mem_usage=False, | |
device_map=None, | |
) | |
if args.pretrained_transformer_path is None and model.adapter is None: | |
model.register_to_config(t5_dim=t5_dim) | |
model.adapter = nn.Sequential( | |
nn.LayerNorm(t5_dim, elementwise_affine=False, eps=1e-6), | |
nn.Linear(t5_dim, model.config.joint_attention_dim, bias=False) | |
) | |
model.requires_grad_(True) | |
model.train() | |
model = torch.compile(model) | |
if args.gradient_checkpointing: | |
model.enable_gradient_checkpointing() | |
if args.use_ema: # Not verify the robostness of this part | |
ema = EMAModel( | |
model.parameters(), | |
decay=args.ema_decay, | |
update_after_step=args.ema_update_after_step, | |
model_cls=SymmetricTransformer2DModel, | |
model_config=model.config, | |
) | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
transformer_lora_layers_to_save = None | |
text_encoder_lora_layers_to_save = None | |
for model_ in models: | |
if isinstance(model_, type(accelerator.unwrap_model(model))): | |
if args.use_lora: | |
transformer_lora_layers_to_save = get_peft_model_state_dict(model_) | |
else: | |
model_.save_pretrained(os.path.join(output_dir, "transformer")) | |
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))): | |
if args.text_encoder_use_lora: | |
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_) | |
else: | |
model_.save_pretrained(os.path.join(output_dir, "text_encoder")) | |
else: | |
raise ValueError(f"unexpected save model: {model_.__class__}") | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None: | |
LoraLoaderMixin.save_lora_weights( | |
output_dir, | |
unet_lora_layers=transformer_lora_layers_to_save, | |
text_encoder_lora_layers=text_encoder_lora_layers_to_save, | |
) | |
if args.use_ema: | |
ema.save_pretrained(os.path.join(output_dir, "ema_model")) | |
def load_model_hook(models, input_dir): | |
transformer = None | |
text_encoder_ = None | |
# this part is added for keep consistency when add model.compile() in the model | |
def adap_compile(ori_dict):#add '_orig_mod.' to each key | |
new_dict = {} | |
for k,v in ori_dict.items(): | |
new_dict['_orig_mod.'+k] = v | |
return new_dict | |
while len(models) > 0: | |
model_ = models.pop() | |
if isinstance(model_, type(accelerator.unwrap_model(model))): | |
if args.use_lora: | |
transformer = model_ | |
else: | |
load_model = SymmetricTransformer2DModel.from_pretrained(os.path.join(input_dir, "transformer"), low_cpu_mem_usage=False, device_map=None) | |
model_.load_state_dict(adap_compile(load_model.state_dict())) | |
del load_model | |
else: | |
raise ValueError(f"unexpected save model: {model.__class__}") | |
if transformer is not None or text_encoder_ is not None: | |
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) | |
LoraLoaderMixin.load_lora_into_text_encoder( | |
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_ | |
) | |
LoraLoaderMixin.load_lora_into_transformer( | |
lora_state_dict, network_alphas=network_alphas, transformer=transformer | |
) | |
if args.use_ema: | |
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=SymmetricTransformer2DModel) | |
ema.load_state_dict(adap_compile(load_from.state_dict())) | |
del load_from | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
) | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
) | |
optimizer_cls = bnb.optim.AdamW8bit | |
else: | |
optimizer_cls = torch.optim.AdamW | |
optimizer_parameters = [p for p in model.parameters() if p.requires_grad] | |
optimizer = optimizer_cls( | |
optimizer_parameters, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
logger.info("Creating dataloaders and lr_scheduler") | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
if args.instance_dataset == "ImageCaptionLargeDataset": | |
dataset = ImageCaptionLargeDataset( | |
root_dir=args.instance_data_dir, | |
tokenizer=tokenizer, | |
size=args.resolution, | |
text_encoder_architecture=args.text_encoder_architecture | |
) | |
elif args.instance_dataset == "DATA_TYPE": | |
raise NotImplementedError("DATA_TYPE is not yet supported") | |
else: | |
assert False | |
def collate_fn(samples): | |
images = [sample["image"] for sample in samples] | |
micro_conds = [sample["micro_conds"] for sample in samples] | |
images = torch.stack(images, dim=0) | |
micro_conds = torch.stack(micro_conds, dim=0) | |
if isinstance(samples[0]["prompt_input_ids"], list): | |
input_ids = [sample["prompt_input_ids"][0] for sample in samples] | |
input_ids_2 = [sample["prompt_input_ids"][1] for sample in samples] | |
input_ids = torch.cat(input_ids, dim=0) | |
input_ids_2 = torch.cat(input_ids_2, dim=0) | |
prompt_input_ids = [input_ids, input_ids_2] | |
elif isinstance(samples[0]["prompt_input_ids"], torch.Tensor): | |
input_ids = [sample["prompt_input_ids"] for sample in samples] | |
input_ids = torch.cat(input_ids, dim=0) | |
prompt_input_ids = input_ids | |
ret = dict( | |
images=images, | |
micro_conds=micro_conds, | |
prompt_input_ids=prompt_input_ids, | |
) | |
return ret | |
train_dataloader = DataLoader( | |
dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
num_workers=args.dataloader_num_workers, | |
collate_fn=collate_fn, | |
pin_memory=True, | |
) | |
train_dataloader.num_batches = len(train_dataloader) | |
lr_scheduler = diffusers.optimization.get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
) | |
logger.info("Preparing model, optimizer and dataloaders") | |
if args.train_text_encoder: | |
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip | |
model, optimizer, lr_scheduler, train_dataloader, text_encoder[0], text_encoder[1] = accelerator.prepare( | |
model, optimizer, lr_scheduler, train_dataloader, text_encoder[0], text_encoder[1] | |
) | |
else: | |
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare( | |
model, optimizer, lr_scheduler, train_dataloader, text_encoder | |
) | |
else: | |
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare( | |
model, optimizer, lr_scheduler, train_dataloader | |
) | |
train_dataloader.num_batches = len(train_dataloader) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
if not args.train_text_encoder: | |
if args.text_encoder_architecture in ("t5_clip", "gemma"): # Not support yet. Only support open_clip | |
text_encoder[0].to(device=accelerator.device, dtype=weight_dtype) | |
text_encoder[1].to(device=accelerator.device, dtype=weight_dtype) | |
else: | |
text_encoder.to(device=accelerator.device, dtype=weight_dtype) | |
vq_model.to(device=accelerator.device) | |
if args.use_ema: | |
ema.to(accelerator.device) | |
with nullcontext() if args.train_text_encoder else torch.no_grad(): | |
if args.text_encoder_architecture in ("t5_clip", "gemma"): # Not support yet. Only support open_clip | |
_input_ids_tmp_ = tokenize_prompt(tokenizer, "", args.text_encoder_architecture) | |
_input_ids_tmp_[0] = _input_ids_tmp_[0].to(accelerator.device, non_blocking=True) | |
_input_ids_tmp_[1] = _input_ids_tmp_[1].to(accelerator.device, non_blocking=True) | |
empty_embeds, empty_clip_embeds = encode_prompt( | |
text_encoder, | |
_input_ids_tmp_, | |
args.text_encoder_architecture | |
) | |
else: | |
empty_embeds, empty_clip_embeds = encode_prompt( | |
text_encoder, | |
tokenize_prompt(tokenizer, "", args.text_encoder_architecture).to(accelerator.device, non_blocking=True), | |
args.text_encoder_architecture | |
) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) | |
# Afterwards we recalculate our number of training epochs. | |
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to | |
# reuse the same training loop with other datasets/loaders. | |
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(f" Num training steps = {args.max_train_steps}") | |
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
resume_from_checkpoint = args.resume_from_checkpoint | |
if resume_from_checkpoint: | |
if resume_from_checkpoint == "latest": | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
if len(dirs) > 0: | |
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1]) | |
else: | |
resume_from_checkpoint = None | |
if resume_from_checkpoint is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
else: | |
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}") | |
if resume_from_checkpoint is None: | |
global_step = 0 | |
first_epoch = 0 | |
else: | |
accelerator.load_state(resume_from_checkpoint) | |
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1]) | |
first_epoch = global_step // num_update_steps_per_epoch | |
# This is to solve the inconsistent tensor device issue | |
if args.use_ema: | |
ema.shadow_params = [p.to(accelerator.device) for p in ema.shadow_params] | |
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to | |
# reuse the same training loop with other datasets/loaders. | |
for epoch in range(first_epoch, num_train_epochs): | |
for batch in train_dataloader: | |
torch.cuda.empty_cache() | |
with torch.no_grad(): | |
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True) | |
pixel_values = batch["images"].to(accelerator.device, non_blocking=True) | |
batch_size = pixel_values.shape[0] | |
# ====================== tokenize images ====================== | |
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size | |
num_splits = math.ceil(batch_size / split_batch_size) | |
image_tokens = [] | |
for i in range(num_splits): | |
start_idx = i * split_batch_size | |
end_idx = min((i + 1) * split_batch_size, batch_size) | |
bs = pixel_values.shape[0] | |
image_tokens.append( | |
vq_model.quantize( | |
vq_model.encode( | |
pixel_values[start_idx: end_idx] | |
).latents | |
)[2][2].reshape(split_batch_size, -1) | |
) | |
image_tokens = torch.cat(image_tokens, dim=0) | |
# ====================== tokenize images ====================== | |
batch_size, seq_len = image_tokens.shape | |
timesteps = torch.rand(batch_size, device=image_tokens.device) | |
mask_prob = torch.cos(timesteps * math.pi * 0.5) | |
mask_prob = mask_prob.clip(args.min_masking_rate) | |
num_token_masked = (seq_len * mask_prob).round().clamp(min=1) | |
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1) | |
mask = batch_randperm < num_token_masked.unsqueeze(-1) | |
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1 | |
input_ids = torch.where(mask, mask_id, image_tokens) | |
labels = torch.where(mask, image_tokens, -100) | |
if "prompt_input_ids" in batch: | |
with nullcontext() if args.train_text_encoder else torch.no_grad(): | |
if args.text_encoder_architecture in ("t5_clip", "gemma"): # Not support yet. Only support open_clip | |
batch["prompt_input_ids"][0] = batch["prompt_input_ids"][0].to(accelerator.device, non_blocking=True) | |
batch["prompt_input_ids"][1] = batch["prompt_input_ids"][1].to(accelerator.device, non_blocking=True) | |
encoder_hidden_states, cond_embeds = encode_prompt( | |
text_encoder, | |
batch["prompt_input_ids"], | |
args.text_encoder_architecture | |
) | |
else: | |
encoder_hidden_states, cond_embeds = encode_prompt( | |
text_encoder, | |
batch["prompt_input_ids"].to(accelerator.device, non_blocking=True), | |
args.text_encoder_architecture | |
) | |
if args.cond_dropout_prob > 0.0: | |
assert encoder_hidden_states is not None | |
batch_size = encoder_hidden_states.shape[0] | |
mask = ( | |
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1) | |
< args.cond_dropout_prob | |
) | |
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1) | |
encoder_hidden_states = torch.where( | |
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_ | |
) | |
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1) | |
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_) | |
bs = input_ids.shape[0] | |
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1) | |
resolution = args.resolution // vae_scale_factor | |
input_ids = input_ids.reshape(bs, resolution, resolution) | |
# Train Step | |
with accelerator.accumulate(model): | |
codebook_size = accelerator.unwrap_model(model).config.codebook_size | |
if args.resolution == 1024: # only stage 3 and stage 4 do not apply 2* | |
img_ids = _prepare_latent_image_ids(input_ids.shape[0], input_ids.shape[-2], input_ids.shape[-1], input_ids.device, input_ids.dtype) | |
else: | |
img_ids = _prepare_latent_image_ids(input_ids.shape[0], 2 * input_ids.shape[-2], 2 * input_ids.shape[-1], input_ids.device, input_ids.dtype) | |
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(device = input_ids.device, dtype = input_ids.dtype) | |
logits = model( | |
hidden_states=input_ids, # should be (batch size, channel, height, width) | |
encoder_hidden_states=encoder_hidden_states, # should be (batch size, sequence_len, embed_dims) | |
micro_conds=micro_conds, # | |
pooled_projections=cond_embeds, # should be (batch_size, projection_dim) | |
img_ids=img_ids, | |
txt_ids=txt_ids, | |
timestep=mask_prob, | |
)[0] | |
logits = logits.reshape(batch_size, codebook_size, -1).permute(0, 2, 1) | |
logits = logits.reshape(-1, codebook_size) | |
loss = F.cross_entropy( | |
logits, | |
labels.view(-1), | |
ignore_index=-100, | |
reduction="mean", | |
) | |
# Gather the losses across all processes for logging (if we use distributed training). | |
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean() | |
accelerator.backward(loss) | |
if args.max_grad_norm is not None and accelerator.sync_gradients: | |
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=True) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if args.use_ema: | |
ema.step(model.parameters()) | |
if (global_step + 1) % args.logging_steps == 0: | |
logs = { | |
"step_loss": avg_loss.item(), | |
"lr": lr_scheduler.get_last_lr()[0], | |
"avg_masking_rate": avg_masking_rate.item(), | |
} | |
accelerator.log(logs, step=global_step + 1) | |
logger.info( | |
f"Step: {global_step + 1} " | |
f"Loss: {avg_loss.item():0.4f} " | |
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}" | |
) | |
if (global_step + 1) % args.checkpointing_steps == 0: | |
save_checkpoint(args, accelerator, global_step + 1, logger) | |
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process: | |
if args.use_ema: | |
ema.store(model.parameters()) | |
ema.copy_to(model.parameters()) | |
with torch.no_grad(): | |
logger.info("Generating images...") | |
model.eval() | |
scheduler = Scheduler.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="scheduler", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
pipe = UnifiedPipeline( | |
transformer=accelerator.unwrap_model(model), | |
tokenizer=tokenizer_one, | |
tokenizer_2=tokenizer_two, | |
text_encoder=text_encoder_one, | |
text_encoder_2=text_encoder_two, | |
vqvae=vq_model, | |
scheduler=scheduler, | |
) | |
output = pipe( | |
prompt=args.validation_prompts, | |
height=args.resolution, | |
width=args.resolution, | |
guidance_scale=9, | |
num_inference_steps=64 | |
) | |
pil_images = output.images | |
wandb_images = [ | |
wandb.Image(image, caption=args.validation_prompts[i]) | |
for i, image in enumerate(pil_images) | |
] | |
wandb.log({"generated_images": wandb_images}, step=global_step + 1) | |
result=[] | |
for img in pil_images: | |
if not isinstance(img, torch.Tensor): | |
img = transforms.ToTensor()(img) | |
result.append(img.unsqueeze(0)) | |
result = torch.cat(result,dim=0) | |
result = make_grid(result, nrow=3) | |
save_image(result,os.path.join(args.output_dir, str(global_step)+'_text2image_1024_CFG-9.png')) | |
model.train() | |
if args.use_ema: | |
ema.restore(model.parameters()) | |
global_step += 1 | |
# Stop training if max steps is reached | |
if global_step >= args.max_train_steps: | |
break | |
# End for | |
accelerator.wait_for_everyone() | |
# Evaluate and save checkpoint at the end of training | |
save_checkpoint(args, accelerator, global_step, logger) | |
# Save the final trained checkpoint | |
if accelerator.is_main_process: | |
model = accelerator.unwrap_model(model) | |
if args.use_ema: | |
ema.copy_to(model.parameters()) | |
model.save_pretrained(args.output_dir) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
main(parse_args()) |