|
import os |
|
import modules.core as core |
|
|
|
from modules.path import modelfile_path |
|
|
|
|
|
xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') |
|
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') |
|
|
|
xl_base = core.load_model(xl_base_filename) |
|
|
|
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt='a handsome man in forest') |
|
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt='bad, ugly') |
|
|
|
empty_latent = core.generate_empty_latent(width=1024, height=1024, batch_size=1) |
|
|
|
sampled_latent = core.ksample( |
|
unet=xl_base.unet, |
|
positive_condition=positive_conditions, |
|
negative_condition=negative_conditions, |
|
latent_image=empty_latent |
|
) |
|
|
|
decoded_latent = core.decode_vae(vae=xl_base.vae, latent_image=sampled_latent) |
|
|
|
images = core.image_to_numpy(decoded_latent) |
|
|
|
for image in images: |
|
import cv2 |
|
cv2.imwrite('a.png', image[:, :, ::-1]) |
|
|