Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
|
5 |
+
|
6 |
+
# Load the model and feature extractor
|
7 |
+
model_name = "r-f/wav2vec-english-speech-emotion-recognition"
|
8 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
9 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Define the emotion labels
|
12 |
+
labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
13 |
+
|
14 |
+
def predict_emotion(audio):
|
15 |
+
# Load and preprocess the audio
|
16 |
+
audio, rate = librosa.load(audio, sr=16000)
|
17 |
+
inputs = feature_extractor(audio, sampling_rate=rate, return_tensors="pt", padding=True)
|
18 |
+
with torch.no_grad():
|
19 |
+
logits = model(**inputs).logits
|
20 |
+
predicted_class_id = torch.argmax(logits).item()
|
21 |
+
return labels[predicted_class_id]
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
interface = gr.Interface(fn=predict_emotion, inputs=gr.Audio(type="filepath"), outputs="text")
|
25 |
+
interface.launch()
|