|
|
from nemo.collections.asr.models import ASRModel |
|
|
import torch |
|
|
import gradio as gr |
|
|
import spaces |
|
|
import gc |
|
|
from pathlib import Path |
|
|
from pydub import AudioSegment |
|
|
import numpy as np |
|
|
import os |
|
|
import tempfile |
|
|
import gradio.themes as gr_themes |
|
|
import csv |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
MODEL_NAME="nvidia/parakeet-tdt-0.6b-v2" |
|
|
|
|
|
model = ASRModel.from_pretrained(model_name=MODEL_NAME) |
|
|
model.eval() |
|
|
|
|
|
def get_audio_segment(audio_path, start_second, end_second): |
|
|
if not audio_path or not Path(audio_path).exists(): |
|
|
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.") |
|
|
return None |
|
|
try: |
|
|
start_ms = int(start_second * 1000) |
|
|
end_ms = int(end_second * 1000) |
|
|
|
|
|
start_ms = max(0, start_ms) |
|
|
if end_ms <= start_ms: |
|
|
print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.") |
|
|
end_ms = start_ms + 100 |
|
|
|
|
|
audio = AudioSegment.from_file(audio_path) |
|
|
clipped_audio = audio[start_ms:end_ms] |
|
|
|
|
|
samples = np.array(clipped_audio.get_array_of_samples()) |
|
|
if clipped_audio.channels == 2: |
|
|
samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype) |
|
|
|
|
|
frame_rate = clipped_audio.frame_rate |
|
|
if frame_rate <= 0: |
|
|
print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.") |
|
|
frame_rate = audio.frame_rate |
|
|
|
|
|
if samples.size == 0: |
|
|
print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).") |
|
|
return None |
|
|
|
|
|
return (frame_rate, samples) |
|
|
except FileNotFoundError: |
|
|
print(f"Error: Audio file not found at path: {audio_path}") |
|
|
return None |
|
|
except Exception as e: |
|
|
print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}") |
|
|
return None |
|
|
|
|
|
@spaces.GPU |
|
|
def get_transcripts_and_raw_times(audio_path): |
|
|
if not audio_path: |
|
|
gr.Error("No audio file path provided for transcription.", duration=None) |
|
|
|
|
|
return [], [], None, gr.DownloadButton(visible=False) |
|
|
|
|
|
vis_data = [["N/A", "N/A", "Processing failed"]] |
|
|
raw_times_data = [[0.0, 0.0]] |
|
|
processed_audio_path = None |
|
|
temp_file = None |
|
|
csv_file_path = None |
|
|
original_path_name = Path(audio_path).name |
|
|
|
|
|
try: |
|
|
try: |
|
|
gr.Info(f"Loading audio: {original_path_name}", duration=2) |
|
|
audio = AudioSegment.from_file(audio_path) |
|
|
except Exception as load_e: |
|
|
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None) |
|
|
|
|
|
return [["Error", "Error", "Load failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
|
|
|
resampled = False |
|
|
mono = False |
|
|
|
|
|
target_sr = 16000 |
|
|
if audio.frame_rate != target_sr: |
|
|
try: |
|
|
audio = audio.set_frame_rate(target_sr) |
|
|
resampled = True |
|
|
except Exception as resample_e: |
|
|
gr.Error(f"Failed to resample audio: {resample_e}", duration=None) |
|
|
|
|
|
return [["Error", "Error", "Resample failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
|
|
|
if audio.channels == 2: |
|
|
try: |
|
|
audio = audio.set_channels(1) |
|
|
mono = True |
|
|
except Exception as mono_e: |
|
|
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None) |
|
|
|
|
|
return [["Error", "Error", "Mono conversion failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
elif audio.channels > 2: |
|
|
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None) |
|
|
|
|
|
return [["Error", "Error", f"{audio.channels}-channel audio not supported"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
|
|
|
if resampled or mono: |
|
|
try: |
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") |
|
|
audio.export(temp_file.name, format="wav") |
|
|
processed_audio_path = temp_file.name |
|
|
temp_file.close() |
|
|
transcribe_path = processed_audio_path |
|
|
info_path_name = f"{original_path_name} (processed)" |
|
|
except Exception as export_e: |
|
|
gr.Error(f"Failed to export processed audio: {export_e}", duration=None) |
|
|
if temp_file and hasattr(temp_file, 'name') and os.path.exists(temp_file.name): |
|
|
os.remove(temp_file.name) |
|
|
|
|
|
return [["Error", "Error", "Export failed"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
else: |
|
|
transcribe_path = audio_path |
|
|
info_path_name = original_path_name |
|
|
|
|
|
try: |
|
|
model.to(device) |
|
|
gr.Info(f"Transcribing {info_path_name} on {device}...", duration=2) |
|
|
output = model.transcribe([transcribe_path], timestamps=True) |
|
|
|
|
|
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp: |
|
|
gr.Error("Transcription failed or produced unexpected output format.", duration=None) |
|
|
|
|
|
return [["Error", "Error", "Transcription Format Issue"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
|
|
|
segment_timestamps = output[0].timestamp['segment'] |
|
|
csv_headers = ["Start (s)", "End (s)", "Segment"] |
|
|
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps] |
|
|
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps] |
|
|
|
|
|
|
|
|
button_update = gr.DownloadButton(visible=False) |
|
|
try: |
|
|
temp_csv_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8') |
|
|
writer = csv.writer(temp_csv_file) |
|
|
writer.writerow(csv_headers) |
|
|
writer.writerows(vis_data) |
|
|
csv_file_path = temp_csv_file.name |
|
|
temp_csv_file.close() |
|
|
print(f"CSV transcript saved to temporary file: {csv_file_path}") |
|
|
|
|
|
button_update = gr.DownloadButton(value=csv_file_path, visible=True) |
|
|
except Exception as csv_e: |
|
|
gr.Error(f"Failed to create transcript CSV file: {csv_e}", duration=None) |
|
|
print(f"Error writing CSV: {csv_e}") |
|
|
|
|
|
|
|
|
gr.Info("Transcription complete.", duration=2) |
|
|
|
|
|
return vis_data, raw_times_data, audio_path, button_update |
|
|
|
|
|
except torch.cuda.OutOfMemoryError as e: |
|
|
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.' |
|
|
print(f"CUDA OutOfMemoryError: {e}") |
|
|
gr.Error(error_msg, duration=None) |
|
|
|
|
|
return [["OOM", "OOM", error_msg]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
|
|
|
except FileNotFoundError: |
|
|
error_msg = f"Audio file for transcription not found: {Path(transcribe_path).name}." |
|
|
print(f"Error: Transcribe audio file not found at path: {transcribe_path}") |
|
|
gr.Error(error_msg, duration=None) |
|
|
|
|
|
return [["Error", "Error", "File not found for transcription"]], [[0.0, 0.0]], audio_path, gr.DownloadButton(visible=False) |
|
|
|
|
|
except Exception as e: |
|
|
error_msg = f"Transcription failed: {e}" |
|
|
print(f"Error during transcription processing: {e}") |
|
|
gr.Error(error_msg, duration=None) |
|
|
vis_data = [["Error", "Error", error_msg]] |
|
|
raw_times_data = [[0.0, 0.0]] |
|
|
|
|
|
return vis_data, raw_times_data, audio_path, gr.DownloadButton(visible=False) |
|
|
finally: |
|
|
try: |
|
|
if 'model' in locals() and hasattr(model, 'cpu'): |
|
|
if device == 'cuda': |
|
|
model.cpu() |
|
|
gc.collect() |
|
|
if device == 'cuda': |
|
|
torch.cuda.empty_cache() |
|
|
except Exception as cleanup_e: |
|
|
print(f"Error during model cleanup: {cleanup_e}") |
|
|
gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5) |
|
|
|
|
|
finally: |
|
|
if processed_audio_path and os.path.exists(processed_audio_path): |
|
|
try: |
|
|
os.remove(processed_audio_path) |
|
|
print(f"Temporary audio file {processed_audio_path} removed.") |
|
|
except Exception as e: |
|
|
print(f"Error removing temporary audio file {processed_audio_path}: {e}") |
|
|
|
|
|
def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path): |
|
|
if not isinstance(raw_ts_list, list): |
|
|
print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.") |
|
|
return gr.Audio(value=None, label="Selected Segment") |
|
|
|
|
|
if not current_audio_path: |
|
|
print("No audio path available to play segment from.") |
|
|
return gr.Audio(value=None, label="Selected Segment") |
|
|
|
|
|
selected_index = evt.index[0] |
|
|
|
|
|
if selected_index < 0 or selected_index >= len(raw_ts_list): |
|
|
print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.") |
|
|
return gr.Audio(value=None, label="Selected Segment") |
|
|
|
|
|
if not isinstance(raw_ts_list[selected_index], (list, tuple)) or len(raw_ts_list[selected_index]) != 2: |
|
|
print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].") |
|
|
return gr.Audio(value=None, label="Selected Segment") |
|
|
|
|
|
start_time_s, end_time_s = raw_ts_list[selected_index] |
|
|
|
|
|
print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s") |
|
|
|
|
|
segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s) |
|
|
|
|
|
if segment_data: |
|
|
print("Segment data retrieved successfully.") |
|
|
return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False) |
|
|
else: |
|
|
print("Failed to get audio segment data.") |
|
|
return gr.Audio(value=None, label="Selected Segment") |
|
|
|
|
|
article = ( |
|
|
"<p style='font-size: 1.1em;'>" |
|
|
"This demo showcases <code><a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2'>parakeet-tdt-0.6b-v2</a></code>, a 600-million-parameter model designed for high-quality English speech recognition." |
|
|
"</p>" |
|
|
"<p><strong style='color: red; font-size: 1.2em;'>Key Features:</strong></p>" |
|
|
"<ul style='font-size: 1.1em;'>" |
|
|
" <li>Automatic punctuation and capitalization</li>" |
|
|
" <li>Accurate word-level timestamps (click on a segment in the table below to play it!)</li>" |
|
|
" <li>Efficiently transcribes long audio segments (up to 20 minutes) <small>(For even longer audios, see <a href='https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_chunked_inference/rnnt/speech_to_text_buffered_infer_rnnt.py' target='_blank'>this script</a>)</small></li>" |
|
|
" <li>Robust performance on spoken numbers, and song lyrics transcription </li>" |
|
|
"</ul>" |
|
|
"<p style='font-size: 1.1em;'>" |
|
|
"This model is <strong>available for commercial and non-commercial use</strong>." |
|
|
"</p>" |
|
|
"<p style='text-align: center;'>" |
|
|
"<a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2' target='_blank'>ποΈ Learn more about the Model</a> | " |
|
|
"<a href='https://arxiv.org/abs/2305.05084' target='_blank'>π Fast Conformer paper</a> | " |
|
|
"<a href='https://arxiv.org/abs/2304.06795' target='_blank'>π TDT paper</a> | " |
|
|
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» NeMo Repository</a>" |
|
|
"</p>" |
|
|
) |
|
|
|
|
|
examples = [ |
|
|
["data/example-yt_saTD1u8PorI.mp3"], |
|
|
] |
|
|
|
|
|
|
|
|
nvidia_theme = gr_themes.Default( |
|
|
primary_hue=gr_themes.Color( |
|
|
c50="#E6F1D9", |
|
|
c100="#CEE3B3", |
|
|
c200="#B5D58C", |
|
|
c300="#9CC766", |
|
|
c400="#84B940", |
|
|
c500="#76B900", |
|
|
c600="#68A600", |
|
|
c700="#5A9200", |
|
|
c800="#4C7E00", |
|
|
c900="#3E6A00", |
|
|
c950="#2F5600" |
|
|
), |
|
|
neutral_hue="gray", |
|
|
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], |
|
|
).set() |
|
|
|
|
|
|
|
|
with gr.Blocks(theme=nvidia_theme) as demo: |
|
|
model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME |
|
|
gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>Speech Transcription with {model_display_name}</h1>") |
|
|
gr.HTML(article) |
|
|
|
|
|
current_audio_path_state = gr.State(None) |
|
|
raw_timestamps_list_state = gr.State([]) |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("Audio File"): |
|
|
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File") |
|
|
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)") |
|
|
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary") |
|
|
|
|
|
with gr.TabItem("Microphone"): |
|
|
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio") |
|
|
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary") |
|
|
|
|
|
gr.Markdown("---") |
|
|
gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results (Click row to play segment)</strong></p>") |
|
|
|
|
|
|
|
|
download_btn = gr.DownloadButton(label="Download Transcript (CSV)", visible=False) |
|
|
|
|
|
vis_timestamps_df = gr.DataFrame( |
|
|
headers=["Start (s)", "End (s)", "Segment"], |
|
|
datatype=["number", "number", "str"], |
|
|
wrap=True, |
|
|
label="Transcription Segments" |
|
|
) |
|
|
|
|
|
|
|
|
selected_segment_player = gr.Audio(label="Selected Segment", interactive=False) |
|
|
|
|
|
mic_transcribe_btn.click( |
|
|
fn=get_transcripts_and_raw_times, |
|
|
inputs=[mic_input], |
|
|
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn], |
|
|
api_name="transcribe_mic" |
|
|
) |
|
|
|
|
|
file_transcribe_btn.click( |
|
|
fn=get_transcripts_and_raw_times, |
|
|
inputs=[file_input], |
|
|
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn], |
|
|
api_name="transcribe_file" |
|
|
) |
|
|
|
|
|
vis_timestamps_df.select( |
|
|
fn=play_segment, |
|
|
inputs=[raw_timestamps_list_state, current_audio_path_state], |
|
|
outputs=[selected_segment_player], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("Launching Gradio Demo...") |
|
|
demo.queue() |
|
|
demo.launch() |
|
|
|