File size: 10,280 Bytes
1a9c884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import React, { useState, useRef, useEffect } from "react";
import { FASTVLM_BOXING_PROMPT } from "../constants";
import { useVLMContext } from "../context/useVLMContext";
import { extractJsonFromMarkdown, drawBoundingBoxesOnCanvas } from "./BoxAnnotator";

const MODES = ["Webcam", "URL", "File"] as const;
type Mode = typeof MODES[number];

const EXAMPLE_VIDEO_URL =
  "https://dm0qx8t0i9gc9.cloudfront.net/watermarks/video/47Fj2US_gijjhliil/large-group-of-people-walking-at-city_rpem-bqvu__f51e7e41cf28b832502c9709c8eb2fd8__P360.mp4";
const EXAMPLE_PROMPT = "Find as many objects in the video and box them.";

export default function MultiSourceCaptioningView() {
  const [mode, setMode] = useState<Mode>("URL");
  const [videoUrl, setVideoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
  const [inputUrl, setInputUrl] = useState<string>(EXAMPLE_VIDEO_URL);
  const [prompt, setPrompt] = useState<string>(EXAMPLE_PROMPT);
  const [processing, setProcessing] = useState(false);
  const [error, setError] = useState<string | null>(null);
  const [webcamActive, setWebcamActive] = useState(false);

  const videoRef = useRef<HTMLVideoElement | null>(null);
  const canvasRef = useRef<HTMLCanvasElement | null>(null);
  const webcamStreamRef = useRef<MediaStream | null>(null);
  const { isLoaded, runInference } = useVLMContext();

  // Webcam setup and teardown
  useEffect(() => {
    if (mode !== "Webcam") {
      if (webcamStreamRef.current) {
        webcamStreamRef.current.getTracks().forEach((track) => track.stop());
        webcamStreamRef.current = null;
      }
      setWebcamActive(false);
      return;
    }
    let stopped = false;
    const setupWebcam = async () => {
      try {
        setError(null);
        const stream = await navigator.mediaDevices.getUserMedia({ video: true });
        webcamStreamRef.current = stream;
        if (videoRef.current) {
          videoRef.current.srcObject = stream;
          setWebcamActive(true);
        }
      } catch (e) {
        setError("Could not access webcam: " + (e instanceof Error ? e.message : String(e)));
        setWebcamActive(false);
      }
    };
    setupWebcam();
    return () => {
      stopped = true;
      if (webcamStreamRef.current) {
        webcamStreamRef.current.getTracks().forEach((track) => track.stop());
        webcamStreamRef.current = null;
      }
      setWebcamActive(false);
    };
  }, [mode]);

  // Process webcam frames
  useEffect(() => {
    if (mode !== "Webcam" || !isLoaded || !webcamActive) return;
    let interval: NodeJS.Timeout | null = null;
    let stopped = false;
    const processFrame = async () => {
      if (!videoRef.current || !canvasRef.current) return;
      const video = videoRef.current;
      const canvas = canvasRef.current;
      if (video.videoWidth === 0) return;
      canvas.width = video.videoWidth;
      canvas.height = video.videoHeight;
      const ctx = canvas.getContext("2d");
      if (!ctx) return;
      ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
      try {
        setProcessing(true);
        setError(null);
        // Use FastVLM inference on the current frame
        const fakeVideo = {
          videoWidth: canvas.width,
          videoHeight: canvas.height,
          // @ts-ignore
          getContext: () => ctx,
        } as HTMLVideoElement;
        const result = await runInference(fakeVideo, prompt);
        // Clear canvas and redraw frame
        ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
        // Parse and draw boxes
        const boxes = extractJsonFromMarkdown(result) || [];
        drawBoundingBoxesOnCanvas(ctx, boxes);
      } catch (e) {
        setError(e instanceof Error ? e.message : String(e));
      } finally {
        setProcessing(false);
      }
    };
    interval = setInterval(() => {
      if (!stopped) processFrame();
    }, 1000);
    return () => {
      stopped = true;
      if (interval) clearInterval(interval);
    };
  }, [mode, isLoaded, prompt, runInference, webcamActive]);

  // Process video frames for URL mode
  useEffect(() => {
    if (mode !== "URL" || !isLoaded) return;
    let interval: NodeJS.Timeout | null = null;
    let stopped = false;
    const processFrame = async () => {
      if (!videoRef.current || !canvasRef.current) return;
      const video = videoRef.current;
      const canvas = canvasRef.current;
      if (video.paused || video.ended || video.videoWidth === 0) return;
      canvas.width = video.videoWidth;
      canvas.height = video.videoHeight;
      const ctx = canvas.getContext("2d");
      if (!ctx) return;
      ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
      try {
        setProcessing(true);
        setError(null);
        // Use FastVLM inference on the current frame
        const fakeVideo = {
          videoWidth: canvas.width,
          videoHeight: canvas.height,
          // @ts-ignore
          getContext: () => ctx,
        } as HTMLVideoElement;
        const result = await runInference(fakeVideo, prompt);
        // Clear canvas and redraw frame
        ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
        // Parse and draw boxes
        const boxes = extractJsonFromMarkdown(result) || [];
        drawBoundingBoxesOnCanvas(ctx, boxes);
      } catch (e) {
        setError(e instanceof Error ? e.message : String(e));
      } finally {
        setProcessing(false);
      }
    };
    interval = setInterval(() => {
      if (!stopped) processFrame();
    }, 1000);
    return () => {
      stopped = true;
      if (interval) clearInterval(interval);
    };
  }, [mode, isLoaded, prompt, runInference]);

  return (
    <div className="absolute inset-0 text-white">

      <div className="flex flex-col items-center justify-center h-full w-full">

        {/* Mode Selector */}

        <div className="mb-6">

          <div className="flex space-x-4">

            {MODES.map((m) => (

              <button

                key={m}

                className={`px-6 py-2 rounded-lg font-semibold transition-all duration-200 ${

                  mode === m ? "bg-blue-600 text-white" : "bg-gray-700 text-gray-300 hover:bg-blue-500"

                }`}

                onClick={() => setMode(m)}

              >

                {m}

              </button>

            ))}

          </div>

        </div>



        {/* Mode Content */}

        <div className="w-full max-w-2xl flex-1 flex flex-col items-center justify-center">

          {mode === "Webcam" && (

            <div className="w-full text-center flex flex-col items-center">

              <div className="mb-4 w-full max-w-xl">

                <label className="block text-left mb-2 font-medium">Detection Prompt:</label>

                <textarea

                  className="w-full p-2 rounded-lg text-black"

                  rows={3}

                  value={prompt}

                  onChange={(e) => setPrompt(e.target.value)}

                />

              </div>

              <div className="relative w-full max-w-xl">

                <video

                  ref={videoRef}

                  autoPlay

                  muted

                  playsInline

                  className="w-full rounded-lg shadow-lg mb-2"

                  style={{ background: "#222" }}

                />

                <canvas

                  ref={canvasRef}

                  className="absolute top-0 left-0 w-full h-full pointer-events-none"

                  style={{ zIndex: 10, pointerEvents: "none" }}

                />

              </div>

              {processing && <div className="text-blue-400 mt-2">Processing frame...</div>}

              {error && <div className="text-red-400 mt-2">Error: {error}</div>}

            </div>

          )}

          {mode === "URL" && (

            <div className="w-full text-center flex flex-col items-center">

              <p className="mb-4">Enter a video stream URL (e.g., HTTP MP4, MJPEG, HLS, etc.):</p>

              <div className="flex w-full max-w-xl mb-4">

                <input

                  type="text"

                  className="flex-1 px-4 py-2 rounded-l-lg text-black"

                  value={inputUrl}

                  onChange={(e) => setInputUrl(e.target.value)}

                  placeholder="Paste video URL here"

                />

                <button

                  className="px-4 py-2 rounded-r-lg bg-blue-600 text-white font-semibold"

                  onClick={() => setVideoUrl(inputUrl)}

                >

                  Load

                </button>

              </div>

              <div className="mb-4 w-full max-w-xl">

                <label className="block text-left mb-2 font-medium">Detection Prompt:</label>

                <textarea

                  className="w-full p-2 rounded-lg text-black"

                  rows={3}

                  value={prompt}

                  onChange={(e) => setPrompt(e.target.value)}

                />

              </div>

              <div className="relative w-full max-w-xl">

                <video

                  ref={videoRef}

                  src={videoUrl}

                  controls

                  autoPlay

                  loop

                  className="w-full rounded-lg shadow-lg mb-2"

                  style={{ background: "#222" }}

                />

                <canvas

                  ref={canvasRef}

                  className="absolute top-0 left-0 w-full h-full pointer-events-none"

                  style={{ zIndex: 10, pointerEvents: "none" }}

                />

              </div>

              {processing && <div className="text-blue-400 mt-2">Processing frame...</div>}

              {error && <div className="text-red-400 mt-2">Error: {error}</div>}

            </div>

          )}

          {mode === "File" && (

            <div className="w-full text-center">

              <p className="mb-4">Upload a video or image file for detection (coming soon).</p>

            </div>

          )}

        </div>

      </div>

    </div>
  );
}