Spaces:
Running
Running
Upload 38 files
Browse files
src/components/MultiSourceCaptioningView.tsx
CHANGED
@@ -62,6 +62,27 @@ function isVideoFile(file: File) {
|
|
62 |
return file.type.startsWith("video/");
|
63 |
}
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
export default function MultiSourceCaptioningView() {
|
66 |
const [mode, setMode] = useState<Mode>("File");
|
67 |
const [videoUrl, setVideoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
|
@@ -80,6 +101,8 @@ export default function MultiSourceCaptioningView() {
|
|
80 |
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
|
81 |
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
|
82 |
const [inferenceStatus, setInferenceStatus] = useState<string>("");
|
|
|
|
|
83 |
|
84 |
const videoRef = useRef<HTMLVideoElement | null>(null);
|
85 |
const canvasRef = useRef<HTMLCanvasElement | null>(null);
|
@@ -87,6 +110,31 @@ export default function MultiSourceCaptioningView() {
|
|
87 |
const webcamStreamRef = useRef<MediaStream | null>(null);
|
88 |
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
const processVideoFrame = async () => {
|
91 |
if (!videoRef.current || !canvasRef.current) return;
|
92 |
const video = videoRef.current;
|
@@ -97,28 +145,46 @@ export default function MultiSourceCaptioningView() {
|
|
97 |
const ctx = canvas.getContext("2d");
|
98 |
if (!ctx) return;
|
99 |
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
boxes =
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
}
|
121 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
};
|
123 |
|
124 |
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
|
@@ -228,30 +294,55 @@ export default function MultiSourceCaptioningView() {
|
|
228 |
setProcessing(true);
|
229 |
setError(null);
|
230 |
setInferenceStatus("Running inference...");
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
boxes =
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
}
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
}
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
setProcessing(false);
|
256 |
};
|
257 |
|
|
|
62 |
return file.type.startsWith("video/");
|
63 |
}
|
64 |
|
65 |
+
// Utility to get ImageData from a video or image element
|
66 |
+
function getImageDataFromElement(media: HTMLVideoElement | HTMLImageElement): ImageData | null {
|
67 |
+
const canvas = document.createElement("canvas");
|
68 |
+
let width = 0, height = 0;
|
69 |
+
if (media instanceof HTMLVideoElement) {
|
70 |
+
width = media.videoWidth;
|
71 |
+
height = media.videoHeight;
|
72 |
+
} else if (media instanceof HTMLImageElement) {
|
73 |
+
width = media.naturalWidth;
|
74 |
+
height = media.naturalHeight;
|
75 |
+
} else {
|
76 |
+
return null;
|
77 |
+
}
|
78 |
+
canvas.width = width;
|
79 |
+
canvas.height = height;
|
80 |
+
const ctx = canvas.getContext("2d");
|
81 |
+
if (!ctx) return null;
|
82 |
+
ctx.drawImage(media, 0, 0, width, height);
|
83 |
+
return ctx.getImageData(0, 0, width, height);
|
84 |
+
}
|
85 |
+
|
86 |
export default function MultiSourceCaptioningView() {
|
87 |
const [mode, setMode] = useState<Mode>("File");
|
88 |
const [videoUrl, setVideoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
|
|
|
101 |
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
|
102 |
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
|
103 |
const [inferenceStatus, setInferenceStatus] = useState<string>("");
|
104 |
+
const inferenceWorkerRef = useRef<Worker | null>(null);
|
105 |
+
const [useWorker, setUseWorker] = useState(true); // Toggle for worker usage
|
106 |
|
107 |
const videoRef = useRef<HTMLVideoElement | null>(null);
|
108 |
const canvasRef = useRef<HTMLCanvasElement | null>(null);
|
|
|
110 |
const webcamStreamRef = useRef<MediaStream | null>(null);
|
111 |
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();
|
112 |
|
113 |
+
useEffect(() => {
|
114 |
+
if (useWorker) {
|
115 |
+
inferenceWorkerRef.current = new Worker(
|
116 |
+
new URL('../workers/inferenceWorker.ts', import.meta.url),
|
117 |
+
{ type: 'module' }
|
118 |
+
);
|
119 |
+
}
|
120 |
+
return () => {
|
121 |
+
inferenceWorkerRef.current?.terminate();
|
122 |
+
inferenceWorkerRef.current = null;
|
123 |
+
};
|
124 |
+
}, [useWorker]);
|
125 |
+
|
126 |
+
// Helper to run inference in worker
|
127 |
+
const runInferenceInWorker = (media: HTMLVideoElement | HTMLImageElement, prompt: string) => {
|
128 |
+
return new Promise((resolve, reject) => {
|
129 |
+
if (!inferenceWorkerRef.current) return reject('No worker');
|
130 |
+
const imageData = getImageDataFromElement(media);
|
131 |
+
if (!imageData) return reject('Could not get image data');
|
132 |
+
inferenceWorkerRef.current.onmessage = (event) => resolve(event.data);
|
133 |
+
inferenceWorkerRef.current.onerror = (err) => reject(err);
|
134 |
+
inferenceWorkerRef.current.postMessage({ imageData, prompt });
|
135 |
+
});
|
136 |
+
};
|
137 |
+
|
138 |
const processVideoFrame = async () => {
|
139 |
if (!videoRef.current || !canvasRef.current) return;
|
140 |
const video = videoRef.current;
|
|
|
145 |
const ctx = canvas.getContext("2d");
|
146 |
if (!ctx) return;
|
147 |
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
148 |
+
if (useWorker && inferenceWorkerRef.current) {
|
149 |
+
try {
|
150 |
+
const output = await runInferenceInWorker(video, prompt);
|
151 |
+
setDebugOutput(JSON.stringify(output, null, 2));
|
152 |
+
let boxes = normalizeBoxes(output);
|
153 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
154 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
155 |
+
const scaleX = canvas.width / video.videoWidth;
|
156 |
+
const scaleY = canvas.height / video.videoHeight;
|
157 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
158 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
159 |
+
}
|
160 |
+
} catch (err) {
|
161 |
+
setInferenceStatus("Worker inference failed, falling back to main thread.");
|
162 |
+
// fallback to main-thread inference
|
163 |
+
await runInference(video, prompt, (output: string) => {
|
164 |
+
setDebugOutput(output);
|
165 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
166 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
167 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
168 |
+
const scaleX = canvas.width / video.videoWidth;
|
169 |
+
const scaleY = canvas.height / video.videoHeight;
|
170 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
171 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
172 |
+
}
|
173 |
+
});
|
174 |
}
|
175 |
+
} else {
|
176 |
+
await runInference(video, prompt, (output: string) => {
|
177 |
+
setDebugOutput(output);
|
178 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
179 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
180 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
181 |
+
const scaleX = canvas.width / video.videoWidth;
|
182 |
+
const scaleY = canvas.height / video.videoHeight;
|
183 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
184 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
185 |
+
}
|
186 |
+
});
|
187 |
+
}
|
188 |
};
|
189 |
|
190 |
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
|
|
|
294 |
setProcessing(true);
|
295 |
setError(null);
|
296 |
setInferenceStatus("Running inference...");
|
297 |
+
if (useWorker && inferenceWorkerRef.current) {
|
298 |
+
try {
|
299 |
+
const output = await runInferenceInWorker(img, prompt);
|
300 |
+
setDebugOutput(JSON.stringify(output, null, 2));
|
301 |
+
setInferenceStatus("Inference complete.");
|
302 |
+
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
303 |
+
let boxes = normalizeBoxes(output);
|
304 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
305 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
306 |
+
const scaleX = canvas.width / img.naturalWidth;
|
307 |
+
const scaleY = canvas.height / img.naturalHeight;
|
308 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
309 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
310 |
+
}
|
311 |
+
setImageProcessed(true);
|
312 |
+
} catch (err) {
|
313 |
+
setInferenceStatus("Worker inference failed, falling back to main thread.");
|
314 |
+
// fallback to main-thread inference
|
315 |
+
await runInference(img, prompt, (output: string) => {
|
316 |
+
setDebugOutput(output);
|
317 |
+
setInferenceStatus("Inference complete.");
|
318 |
+
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
319 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
320 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
321 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
322 |
+
const scaleX = canvas.width / img.naturalWidth;
|
323 |
+
const scaleY = canvas.height / img.naturalHeight;
|
324 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
325 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
326 |
+
}
|
327 |
+
setImageProcessed(true);
|
328 |
+
});
|
329 |
}
|
330 |
+
} else {
|
331 |
+
await runInference(img, prompt, (output: string) => {
|
332 |
+
setDebugOutput(output);
|
333 |
+
setInferenceStatus("Inference complete.");
|
334 |
+
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
335 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
336 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
337 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
338 |
+
const scaleX = canvas.width / img.naturalWidth;
|
339 |
+
const scaleY = canvas.height / img.naturalHeight;
|
340 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
341 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
342 |
+
}
|
343 |
+
setImageProcessed(true);
|
344 |
+
});
|
345 |
+
}
|
346 |
setProcessing(false);
|
347 |
};
|
348 |
|
src/workers/inferenceWorker.ts
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// src/workers/inferenceWorker.ts
|
2 |
+
self.onmessage = async (event) => {
|
3 |
+
const { imageData, prompt } = event.data;
|
4 |
+
// TODO: Import and run your real model inference here
|
5 |
+
// For now, just echo a fake result for testing
|
6 |
+
const result = [{ label: "person", bbox_2d: [[100, 50], [200, 300]] }];
|
7 |
+
self.postMessage(result);
|
8 |
+
};
|
9 |
+
export {};
|