File size: 7,373 Bytes
c4b9526
c3d86d3
e10af0d
c3d86d3
 
 
 
 
 
 
 
 
 
 
 
c4b9526
cc0fe39
031bc5a
 
 
cc0fe39
92a440c
0646ffe
92a440c
 
 
 
 
 
 
 
 
cc0fe39
92a440c
39cc970
cc0fe39
c3d86d3
cc0fe39
c3d86d3
 
 
 
 
 
 
 
 
39cc970
cc0fe39
c3d86d3
cc0fe39
c3d86d3
 
 
 
 
 
 
 
 
39cc970
cc0fe39
c3d86d3
 
 
 
 
 
 
cc0fe39
c3d86d3
 
 
39cc970
 
cc0fe39
6715980
c3d86d3
 
 
 
39cc970
cc0fe39
6715980
c3d86d3
 
 
 
 
 
 
 
 
 
 
 
39cc970
cc0fe39
c3d86d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed25fe
c3d86d3
6715980
 
c3d86d3
 
 
 
 
 
e68d5ed
 
 
c3d86d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6715980
c3d86d3
 
 
 
6715980
c3d86d3
 
 
78bce4d
c3d86d3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
import torch
import spaces
import torchaudio
from whisperspeech.vq_stoks import RQBottleneckTransformer
from encodec.utils import convert_audio
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import logging
import os
from generate_audio import (
    TTSProcessor,
)  
import uuid

device = "cpu"  # Change this to always use CPU
vq_model = RQBottleneckTransformer.load_model(
        "whisper-vq-stoks-medium-en+pl-fixed.model"
    ).to(device)

use_8bit = False    
llm_path = "QuietImpostor/Llama-3.2s-1B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(llm_path)
model_kwargs = {}
if use_8bit:
    model_kwargs["quantization_config"] = BitsAndBytesConfig(
        load_in_8bit=True,
        llm_int8_enable_fp32_cpu_offload=False,
        llm_int8_has_fp16_weight=False,
    )
else:
    model_kwargs["torch_dtype"] = torch.float32  # Change this to use float32 on CPU
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)

@spaces.CPU  # Change this to use CPU
def audio_to_sound_tokens_whisperspeech(audio_path):
    vq_model.ensure_whisper(device)  # Change this to use the defined device
    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()
    
    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|sound_start|>{result}<|sound_end|>'

@spaces.CPU  # Change this to use CPU
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
    vq_model.ensure_whisper(device)  # Change this to use the defined device
    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()
    
    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'

@spaces.CPU  # Change this to use CPU
def text_to_audio_file(text):
    id = str(uuid.uuid4())
    temp_file = f"./user_audio/{id}_temp_audio.wav"
    text = text
    text_split = "_".join(text.lower().split(" "))  
    if text_split[-1] == ".":
        text_split = text_split[:-1]
    tts = TTSProcessor(device)  # Change this to use the defined device
    tts.convert_text_to_audio_file(text, temp_file)
    print(f"Saved audio to {temp_file}")
    return temp_file


@spaces.CPU
def process_input(audio_file=None):
    
    for partial_message in process_audio(audio_file):
        yield partial_message
    
        
@spaces.CPU
def process_transcribe_input(audio_file=None):
    
    for partial_message in process_audio(audio_file, transcript=True):
        yield partial_message
    
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        # encode </s> token
        stop_ids = [tokenizer.eos_token_id, 128009]  # Adjust this based on your model's tokenizer
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False
    
@spaces.CPU
def process_audio(audio_file, transcript=False):
    if audio_file is None:
            raise ValueError("No audio file provided")

    logging.info(f"Audio file received: {audio_file}")
    logging.info(f"Audio file type: {type(audio_file)}")

    sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file)  if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
    logging.info("Sound tokens generated successfully")
    # logging.info(f"audio_file: {audio_file.name}")
    messages = [
        {"role": "user", "content": sound_tokens},
    ]

    stop = StopOnTokens()
    input_str = tokenizer.apply_chat_template(messages, tokenize=False)
    input_ids = tokenizer.encode(input_str, return_tensors="pt")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)  
    generation_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=False,
        stopping_criteria=StoppingCriteriaList([stop])
    )

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        if tokenizer.eos_token in partial_message:
            break
        partial_message = partial_message.replace("assistant\n\n", "")
        yield partial_message
# def stop_generation():
#     # This is a placeholder. Implement actual stopping logic here if needed.
#     return "Generation stopped.", gr.Button.update(interactive=False)
# take all the examples from the examples folder
good_examples = []
for file in os.listdir("./examples"):
    if file.endswith(".wav"):
        good_examples.append([f"./examples/{file}"])
bad_examples = []
for file in os.listdir("./bad_examples"):
    if file.endswith(".wav"):
        bad_examples.append([f"./bad_examples/{file}"])
examples = []
examples.extend(good_examples)
examples.extend(bad_examples)
with gr.Blocks() as iface:
    gr.Markdown("# Llama3.1-S: checkpoint Aug 19, 2024")
    gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio")
    gr.Markdown("Powered by [Homebrew Ltd](https://homebrew.ltd/) | [Read our blog post](https://homebrew.ltd/blog/llama3-just-got-ears)")

    with gr.Row():
        input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
        text_input = gr.Textbox(label="Text Input", visible=False)
        audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
        # audio_output = gr.Audio(label="Converted Audio", type="filepath", visible=False)
    
    convert_button = gr.Button("Make synthetic audio", visible=False)
    submit_button = gr.Button("Chat with AI using audio")
    transcrip_button = gr.Button("Make Model transcribe the audio")
    
    text_output = gr.Textbox(label="Generated Text")
    
    def update_visibility(input_type):
        return (gr.update(visible=input_type == "text"), 
                gr.update(visible=input_type == "text"))
    def convert_and_display(text):
        audio_file = text_to_audio_file(text)
        return audio_file
    def process_example(file_path):
        return update_visibility("audio") 
    input_type.change(
        update_visibility,
        inputs=[input_type],
        outputs=[text_input, convert_button]
    )

    convert_button.click(
        convert_and_display,
        inputs=[text_input],
        outputs=[audio_input]
    )
    
    submit_button.click(
        process_input,
        inputs=[audio_input],
        outputs=[text_output]
    )
    transcrip_button.click(
        process_transcribe_input,
        inputs=[audio_input],
        outputs=[text_output]
    )
    
    gr.Examples(examples, inputs=[audio_input])
iface.queue()
iface.launch()
# launch locally
# iface.launch(server_name="0.0.0.0")